File size: 44,263 Bytes
e877380 de07c6b bc0102e de07c6b 0aa10f8 de07c6b 6288dfd bc0102e de07c6b 6288dfd bc0102e de07c6b bc0102e de07c6b bc0102e de07c6b bc0102e 0aa10f8 bc0102e d7c7a67 de07c6b d7c7a67 de07c6b bc0102e 8b6302b de07c6b 8b6302b bc0102e de07c6b bc0102e de07c6b bc0102e de07c6b bc0102e de07c6b bc0102e de07c6b bc0102e de07c6b bc0102e 3dd54f8 41c4cbb 3dd54f8 de07c6b 0aa10f8 de07c6b 0aa10f8 bc0102e 0aa10f8 de07c6b 0aa10f8 c6c8404 3e8c2fc c6c8404 0aa10f8 c6c8404 de07c6b 41c4cbb de07c6b 3474668 3a371da 564b467 3474668 3dd54f8 3474668 41c4cbb de07c6b 0aa10f8 510ece7 0aa10f8 d6331c6 0aa10f8 4e70804 37abc42 0aa10f8 37abc42 0aa10f8 41c4cbb 0aa10f8 6288dfd 3dd54f8 6288dfd 3dd54f8 6288dfd 46c8fc2 6288dfd de07c6b bc0102e de07c6b bc0102e de07c6b bc0102e 3dd54f8 bc0102e ea3e9f6 de07c6b ea3e9f6 de07c6b ea3e9f6 de07c6b ea3e9f6 de07c6b bc0102e 75e7233 3474668 75e7233 3474668 af1ccf1 3474668 75e7233 3474668 0aa10f8 970f203 0aa10f8 970f203 0aa10f8 970f203 0aa10f8 970f203 0aa10f8 970f203 0aa10f8 970f203 0aa10f8 970f203 0aa10f8 970f203 0aa10f8 970f203 3474668 6288dfd 3474668 bc0102e 3474668 bc0102e 3474668 de07c6b 3474668 de07c6b 3474668 de07c6b 3474668 de07c6b 0aa10f8 18a1aa4 0aa10f8 de8a65d 0aa10f8 de8a65d bc0102e de8a65d 0aa10f8 3474668 3dd54f8 0aa10f8 d7c7a67 0aa10f8 6288dfd 0aa10f8 42b5563 0aa10f8 e3b4a4b 79616b5 e3b4a4b 0aa10f8 3474668 0aa10f8 bc0102e 6288dfd ccc2400 6288dfd 0aa10f8 970f203 0aa10f8 e3b4a4b 79616b5 e3b4a4b 0aa10f8 970f203 0aa10f8 970f203 0aa10f8 e3b4a4b 0aa10f8 e3b4a4b 79616b5 e3b4a4b 0aa10f8 970f203 de8a65d 41c4cbb bc0102e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 |
"""
# ==============================================================================
# Vision-Language and Face Recognition Utilities
# ==============================================================================
This module provides helper functions, lazy-loading mechanisms, and
API endpoint wrappers for multimodal inference, face recognition, and
video scene extraction.
It includes functionality for:
- Lazy initialization of heavyweight models (vision-language and face models)
- Image and video preprocessing
- Multimodal inference with configurable parameters (token limits, temperature)
- Facial embedding generation
- Scene extraction from video files
- Gradio UI components and endpoint definitions for user interaction
All functions and utilities are designed to be:
- Reusable and cache heavy models to reduce repeated loading
- Compatible with GPU/CPU execution
- Stateless and safe to call concurrently from multiple requests
- Modular, separating model logic from endpoint and UI handling
This module serves as the core interface layer between client-facing
APIs/UI and the underlying machine learning models.
# ==============================================================================
"""
# Standard library
import json
import os
import re
from typing import Any, Dict, List, Optional, Tuple, Union
from pathlib import Path
# Third-party libraries
import cv2
import tempfile
import gradio as gr
import numpy as np
import spaces
import torch
from facenet_pytorch import InceptionResnetV1, MTCNN
from PIL import Image
from scenedetect import SceneManager, VideoManager
from scenedetect.detectors import ContentDetector
from transformers import AutoProcessor, LlavaOnevisionForConditionalGeneration
from wordfreq import zipf_frequency
import easyocr
'''
# ==============================================================================
# Lazy-loading utilities for vision-language and face recognition models
# ==============================================================================
This module provides on-demand initialization of heavyweight components, including:
- MTCNN: Face detector used to locate and align faces.
- FaceNet (InceptionResnetV1): Generates 512-dimensional facial embeddings.
- LLaVA OneVision: Vision-language model for multimodal inference.
By loading models lazily and caching them in global variables, the system avoids
unnecessary reinitialization and reduces startup time, improving performance in
production environments such as FastAPI services, Docker deployments, and
Hugging Face Spaces.
# ==============================================================================
'''
MODEL_ID = os.environ.get("MODEL_ID", "BSC-LT/salamandra-7b-vision")
DTYPE = torch.float16 if torch.cuda.is_available() else torch.float32
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
_model = None
_processor = None
_mtcnn = None
_facenet = None
def _load_face_models() -> Tuple[MTCNN, InceptionResnetV1]:
"""
Lazily loads and initializes the facial detection and facial embedding models.
This function loads:
- **MTCNN**: Used for face detection and cropping.
- **InceptionResnetV1 (FaceNet)**: Used to generate 512-dimensional face embeddings.
Both models are loaded only once and stored in global variables to avoid
unnecessary re-initialization. They are automatically placed on GPU if available,
otherwise CPU is used.
Returns:
Tuple[MTCNN, InceptionResnetV1]: A tuple containing the initialized
face detection model and the face embedding model.
"""
global _mtcnn, _facenet
if _mtcnn is None or _facenet is None:
device = DEVICE if DEVICE == "cuda" and torch.cuda.is_available() else "cpu"
_mtcnn = MTCNN(image_size=160, margin=0, post_process=True, device=device)
_facenet = InceptionResnetV1(pretrained="vggface2").eval().to(device)
return _mtcnn, _facenet
def _lazy_load() -> Tuple[LlavaOnevisionForConditionalGeneration, AutoProcessor]:
"""
Lazily loads the vision-language model and its processor.
This function performs a first-time load of:
- **AutoProcessor**: Handles preprocessing of text and images for the model.
- **LlavaOnevisionForConditionalGeneration**: The main multimodal model used
for inference and text generation.
The model is moved to GPU if available and configured with:
- The appropriate floating-point precision (`float16` or `float32`)
- Low memory usage mode
- SafeTensors loading enabled
Both components are cached in global variables to ensure subsequent calls
reuse the loaded instances without reinitialization.
Returns:
Tuple[LlavaOnevisionForConditionalGeneration, AutoProcessor]:
The loaded model and processor ready for inference.
"""
global _model, _processor
if _model is None or _processor is None:
_processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
_model = LlavaOnevisionForConditionalGeneration.from_pretrained(
MODEL_ID,
dtype=DTYPE,
low_cpu_mem_usage=True,
trust_remote_code=True,
use_safetensors=True,
device_map=None,
)
_model.to(DEVICE)
return _model, _processor
'''
# ==============================================================================
# Auxiliary Model Loading Utilities for API Endpoints
# ==============================================================================
This module contains helper functions used internally by the API endpoints to
efficiently load and manage heavy machine learning components. These utilities
handle on-demand initialization ("lazy loading") of both the vision-language
model (LLaVA OneVision) and the facial detection/embedding models (MTCNN and
FaceNet).
The goal of this helper block is to:
- Avoid repeated loading of large models across requests.
- Reduce GPU/CPU memory pressure by reusing cached instances.
- Provide clean separation between endpoint logic and model-handling logic.
- Improve performance and stability in production environments
(FastAPI, Docker, Hugging Face Spaces).
All functions here are intended for internal use and should be called by
endpoint handlers when a model is required for a given request.
# ==============================================================================
'''
@spaces.GPU
def _infer_one(
image: Image.Image,
text: str,
max_new_tokens: int = 256,
temperature: float = 0.7,
context: Optional[Dict] = None,
) -> str:
"""
Run a single multimodal inference step using the LLaVA OneVision model.
This function:
- Optionally downsizes the input image to reduce GPU memory consumption.
- Loads the model and processor through lazy initialization.
- Builds the final prompt by applying the chat template and injecting optional context.
- Performs autoregressive generation with configurable token and temperature settings.
- Returns the decoded textual output.
Args:
image (Image.Image): Input PIL image used for multimodal conditioning.
text (str): User-provided instruction or query.
max_new_tokens (int): Maximum number of tokens to generate.
temperature (float): Sampling temperature controlling output randomness.
context (Optional[Dict]): Additional context injected into the prompt.
Returns:
str: The generated textual response.
"""
image.thumbnail((1024, 1024))
model, processor = _lazy_load()
prompt = processor.apply_chat_template(_compose_prompt(text, context), add_generation_prompt=True)
inputs = processor(images=image, text=prompt, return_tensors="pt").to(DEVICE, dtype=DTYPE)
with torch.inference_mode():
out = model.generate(
**inputs,
max_new_tokens=int(max_new_tokens),
temperature=float(temperature),
)
return processor.decode(out[0], skip_special_tokens=True).strip()
@spaces.GPU
def _get_face_embedding_casting(image: Image.Image) -> list[dict] | None:
"""
Returns list of dicts:
[
{
"embedding": <list[float]>,
"face_crop": <PIL.Image>
},
...
]
"""
try:
mtcnn, facenet = _load_face_models()
boxes, probs = mtcnn.detect(image)
if boxes is None:
return []
resultados = []
device = DEVICE if DEVICE == "cuda" and torch.cuda.is_available() else "cpu"
for box in boxes:
x1, y1, x2, y2 = map(int, box)
face_crop = image.crop((x1, y1, x2, y2))
face_tensor = mtcnn(face_crop)
if face_tensor is None:
continue
face_tensor = face_tensor.unsqueeze(0).to(device)
with torch.no_grad():
emb = facenet(face_tensor).cpu().numpy()[0]
emb = emb / np.linalg.norm(emb)
resultados.append({
"embedding": emb.astype(float).tolist(),
"face_crop": face_crop
})
del mtcnn
del facenet
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
return resultados
except Exception as e:
print(f"Face embedding failed: {e}")
return []
@spaces.GPU
def _get_face_embedding(
image: Image.Image
) -> list[float] | None:
"""
Generate a FaceNet embedding for a single face in an image.
Args:
image (Image.Image): A PIL Image containing a face.
Returns:
list[float] | None: Normalized embedding vector for the detected face,
or None if no face is detected or an error occurs.
"""
try:
mtcnn, facenet = _load_face_models()
boxes, probs = mtcnn.detect(image)
if boxes is None:
return []
embeddings = []
device = DEVICE if DEVICE == "cuda" and torch.cuda.is_available() else "cpu"
for box in boxes:
x1, y1, x2, y2 = map(int, box)
face = image.crop((x1, y1, x2, y2))
face_tensor = mtcnn(face)
if face_tensor is None:
continue
face_tensor = face_tensor.unsqueeze(0).to(device)
with torch.no_grad():
emb = facenet(face_tensor).cpu().numpy()[0]
emb = emb / np.linalg.norm(emb)
embeddings.append(emb.astype(float).tolist())
del mtcnn
del facenet
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
return embeddings
except Exception as e:
print(f"Face embedding failed: {e}")
return []
@spaces.GPU
def _get_scenes_extraction(
video_file: str,
threshold: float,
offset_frames: int,
crop_ratio: float
) -> Tuple[List[Image.Image], List[Dict]] | None:
"""
Extracts scenes from a video and returns cropped images along with information about each scene.
Args:
video_file (str): Path to the video file.
threshold (float): Threshold for scene detection.
offset_frames (int): Frame offset from the start of each scene.
crop_ratio (float): Central crop ratio for each frame.
Returns:
Tuple[List[Image.Image], List[Dict]] | None: List of scene images and list of scene information,
or (None, None) if an error occurs.
"""
try:
# Initialize video and scene managers
video_manager = VideoManager([video_file])
scene_manager = SceneManager()
scene_manager.add_detector(ContentDetector(threshold=threshold))
video_manager.start()
scene_manager.detect_scenes(video_manager)
scene_list = scene_manager.get_scene_list()
if len(scene_list) == 0:
scene_list = [(video_manager.get_base_timecode(), video_manager.get_duration())]
cap = cv2.VideoCapture(video_file)
images: List[Image.Image] = []
scene_info: List[Dict] = []
for i, (start_time, end_time) in enumerate(scene_list):
frame_number = int(start_time.get_frames()) + offset_frames
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_number)
ret, frame = cap.read()
if not ret:
continue
h, w = frame.shape[:2]
# Central crop of the frame
ch, cw = int(h * crop_ratio), int(w * crop_ratio)
cropped_frame = frame[ch:h-ch, cw:w-cw]
# Convert to RGB and save as an image
img_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB)
images.append(Image.fromarray(img_rgb))
# Store scene information
scene_info.append({
"index": i + 1,
"start": start_time.get_seconds(),
"end": end_time.get_seconds()
})
if len(scene_info) == 0:
cap.set(cv2.CAP_PROP_POS_FRAMES, offset_frames)
ret, frame = cap.read()
if ret:
h, w = frame.shape[:2]
ch, cw = int(h * crop_ratio), int(w * crop_ratio)
cropped_frame = frame[ch:h-ch, cw:w-cw]
img_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB)
images.append(Image.fromarray(img_rgb))
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = cap.get(cv2.CAP_PROP_FPS)
duration_seconds = total_frames / fps if fps > 0 else 0.0
scene_info.append({
"index": 1,
"start": 0.0,
"end": duration_seconds
})
cap.release()
return images, scene_info
except Exception as e:
print("Error in scenes_extraction:", e)
return [], []
@spaces.GPU
def _get_image_list_description(
images: List[Image.Image]
) -> List[str]:
"""
Generate brief visual descriptions for a list of PIL Images using Salamandra Vision.
Args:
images (List[Image.Image]): List of PIL Image objects to describe.
Returns:
List[str]: List of descriptions, one per image.
"""
list_images = [x[0] for x in images]
# Load the Salamandra Vision model
path_model = "BSC-LT/salamandra-7b-vision"
processor = AutoProcessor.from_pretrained(path_model)
model = LlavaOnevisionForConditionalGeneration.from_pretrained(
path_model,
torch_dtype=torch.float16,
low_cpu_mem_usage=False
).to("cuda")
# System prompt for image description
sys_prompt = (
"Ets un expert en narrativa visual. "
"Descriu la imatge de manera molt breu i senzilla en català, "
"explicant només l'acció principal que es veu. "
"Respon amb una única frase curta (màxim 10–20 paraules), "
"sense afegir detalls innecessaris ni descriure el fons."
)
all_results = []
for img in list_images:
batch = [img]
# Create the conversation template
conversation = [
{"role": "system", "content": sys_prompt},
{"role": "user", "content": [
{"type": "image", "image": batch[0]},
{"type": "text", "text": (
"Descriu la imatge de manera molt breu i senzilla en català."
)}
]}
]
prompt_batch = processor.apply_chat_template(conversation, add_generation_prompt=True)
# Prepare inputs for the model
inputs = processor(images=batch, text=prompt_batch, return_tensors="pt")
for k, v in inputs.items():
if v.dtype.is_floating_point:
inputs[k] = v.to("cuda", torch.float16)
else:
inputs[k] = v.to("cuda")
# Generate the description
output = model.generate(**inputs, max_new_tokens=1024)
text = processor.decode(output[0], skip_special_tokens=True)
lines = text.split("\n")
# Extract the assistant's answer
desc = ""
for i, line in enumerate(lines):
if line.lower().startswith(" assistant"):
desc = "\n".join(lines[i+1:]).strip()
break
all_results.append(desc)
del model
torch.cuda.empty_cache()
return all_results
@spaces.GPU
def _get_ocr_characters_to_image(
image: Image.Image,
informacion_image: Dict[str, Any],
face_col: List[Dict[str, Any]]
) -> Dict[str, Any]:
"""
Process an input image by detecting faces, generating face embeddings,
performing K-nearest neighbors (KNN) matching against a known face database,
and extracting OCR (Optical Character Recognition) text using EasyOCR.
The function performs the following steps:
1. Detects faces in the image and generates embeddings for each face.
2. For each detected face, retrieves the top 3 closest embeddings from the
reference database and determines the identity if the distance is below
a defined threshold.
3. Executes OCR using EasyOCR to extract textual content from the image.
It filters the OCR output by removing uncommon or noisy words, and
validates results using zipf word frequency to ensure linguistic relevance.
4. Returns a dictionary containing metadata, detected identities, and OCR text.
Parameters
----------
image : PIL.Image.Image
The image to process.
informacion_image : Dict[str, Any]
Metadata about the image (index, start time, end time), provided as JSON.
face_col : List[Dict[str, Any]]
A list of dictionaries containing stored face embeddings and names,
provided as JSON.
Returns
-------
Dict[str, Any]
A dictionary containing:
- id: image identifier
- start: start timestamp
- end: end timestamp
- faces: list of detected identities
- ocr: extracted OCR text
"""
# First, detect faces in the image and generate embeddings for each of them.
raw_faces = _get_face_embedding(image)
informacion_image_dict = json.loads(informacion_image)
face_col = json.loads(face_col)
faces_detected = []
if raw_faces != None:
for f in raw_faces:
embedding_image = f
identity = "Desconegut"
knn = []
# Now search for the 3 nearest neighbors in the database for each embedding.
if face_col and embedding_image is not None:
try:
num_embeddings = len(face_col)
if num_embeddings < 1:
knn = []
identity = "Desconegut"
else:
n_results = min(3, num_embeddings)
embedding_image = np.array(embedding_image)
distances_embedding = []
# Compute Euclidean distance between the detected face and each stored embedding
for image_base_datos in face_col:
image_base_datos_embedding = np.array(image_base_datos["embedding"])
distance = np.linalg.norm(embedding_image - image_base_datos_embedding)
distances_embedding.append({
"identity": image_base_datos["nombre"],
"distance": float(distance)
})
# Sort by distance and keep the top N matches
distances_embedding = sorted(distances_embedding, key=lambda x: x["distance"])
knn = distances_embedding[:n_results]
# Assign identity if closest match is below distance threshold
if knn and knn[0]["distance"] < 0.8:
identity = knn[0]["identity"]
else:
identity = "Desconegut"
except Exception as e:
print(f"Face KNN failed: {e}")
knn = []
identity = "Desconegut"
faces_detected.append(identity)
# Now perform OCR detection
ocr_text_easyocr = ""
use_easyocr = True
if use_easyocr:
try:
rgb = np.array(image)
bgr = cv2.cvtColor(rgb, cv2.COLOR_RGB2BGR)
# EasyOCR reader for English and Spanish
reader = easyocr.Reader(['en', 'es'], gpu=True)
results = reader.readtext(bgr)
# Join OCR results into a single text string
ocr_text_easyocr = " ".join([text for _, text, _ in results]).strip()
# Filter out uncommon or malformed words
palabras_ocr_text = ocr_text_easyocr.split()
palabras_ocr_text = [p for p in palabras_ocr_text if re.fullmatch(r'[A-Za-zÀ-ÿ]+', p)]
# Keep OCR text only if at least one word is linguistically valid
for palabra in palabras_ocr_text:
if zipf_frequency(palabra, "ca") != 0.0:
break
else:
ocr_text_easyocr = ""
except Exception as e:
print(f"OCR error: {e}")
return {"id": informacion_image_dict["index"],
"start": informacion_image_dict["start"],
"end": informacion_image_dict["end"],
"faces": faces_detected,
"ocr": ""}
# Final structured output with metadata, faces, and OCR
informacion_image_completo = {
"id": informacion_image_dict["index"],
"start": informacion_image_dict["start"],
"end": informacion_image_dict["end"],
"faces": faces_detected,
"ocr": ocr_text_easyocr,
}
return informacion_image_completo
@spaces.GPU
def _extract_keyframes_every_second(
video: str,
crop_ratio: float = 0.1
) -> Tuple[List[np.ndarray], List[dict]]:
"""
Extracts one keyframe per second from a video file.
Parameters
----------
video : str
Path to the input video file.
crop_ratio : float, optional
Percentage of the frame to crop from each border before resizing
back to the original dimensions. Default is 0.1 (10%).
Returns
-------
images : List[np.ndarray]
List of extracted frames as NumPy arrays.
frames_info : List[dict]
List of metadata dictionaries for each extracted frame. Each dictionary contains:
- "index": sequential index starting from 1
- "start": starting second of the interval represented by the frame
- "end": ending second of the interval represented by the frame
Notes
-----
A temporary directory is automatically created to store intermediate
images. These images are not returned but can be useful for debugging.
The directory is cleaned up after the function finishes.
"""
# Temporary directory for storing intermediate images (auto-cleaned afterwards)
tmp_dir = Path(tempfile.mkdtemp())
# Open the video capture
cap = cv2.VideoCapture(str(video))
fps = cap.get(cv2.CAP_PROP_FPS) or 25.0
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
duration = total_frames / fps
images = []
frames_info = []
# Loop through the video extracting one frame per second
for sec in range(int(duration)):
frame_number = int(sec * fps)
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_number)
ret, frame = cap.read()
if not ret:
break
# Crop the frame by the given ratio on all borders
h, w = frame.shape[:2]
ch, cw = int(h * crop_ratio), int(w * crop_ratio)
cropped = frame[ch:h-ch, cw:w-cw]
# Resize cropped frame back to original resolution
cropped = cv2.resize(cropped, (w, h))
cropped_rgb = cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB)
timestamp = frame_number / fps # Timestamp of the extracted frame
# Save temporary image for debugging (not returned)
tmp_path = tmp_dir / f"frame_{sec:03d}.jpg"
cv2.imwrite(str(tmp_path), cv2.cvtColor(cropped_rgb, cv2.COLOR_RGB2BGR))
# Append extracted frame and metadata
images.append(Image.fromarray(cropped_rgb))
frames_info.append({
"index": sec + 1,
"start": sec,
"end": sec + 1
})
# Release the video capture object
cap.release()
return images, frames_info
"""
# ==============================================================================
# API Helpers
# ==============================================================================
Collection of public-facing API endpoints used by the application.
This section exposes functions that process incoming requests,
perform validation, interact with the model inference helpers,
and return structured responses. Each endpoint is designed to be
stateless, deterministic, and safe to call from external clients.
Endpoints in this module typically:
- Receive raw data (images, text, base64-encoded content, etc.)
- Preprocess inputs before forwarding them to internal inference utilities
- Handle optional parameters such as temperature or token limits
- Return JSON-serializable dictionaries as responses
The functions below constitute the interface layer between users
and the underlying model logic implemented in the helper utilities.
# ==============================================================================
"""
def describe_raw(image: Image.Image, text: str = "Describe la imagen con detalle.",
max_new_tokens: int = 256, temperature: float = 0.7) -> Dict[str, str]:
"""
Endpoint to generate a detailed description of an input image.
This function receives an image and an optional text prompt, then forwards
the request to the internal inference helper `_infer_one`. It returns a JSON-
serializable dictionary containing the generated text description.
Parameters
----------
image : PIL.Image.Image
The input image to be analyzed and described.
text : str, optional
Instruction or prompt for the model guiding how the image should be described.
Defaults to a general "describe in detail" prompt (in Spanish).
max_new_tokens : int, optional
Maximum number of tokens the model is allowed to generate. Default is 256.
temperature : float, optional
Sampling temperature controlling randomness of the output. Default is 0.7.
Returns
-------
Dict[str, str]
A dictionary with a single key `"text"` containing the generated description.
"""
result = _infer_one(image, text, max_new_tokens, temperature, context=None)
return {"text": result}
def describe_batch(
images: List[Image.Image],
context_json: str,
max_new_tokens: int = 256,
temperature: float = 0.7
) -> List[str]:
"""
Batch endpoint for the image description engine.
This endpoint receives a list of images along with an optional JSON-formatted
context, and returns a list of textual descriptions generated by the model.
Each image is processed individually using the internal `_infer_one` function,
optionally incorporating the context into the prompt.
Args:
images (List[Image.Image]):
A list of PIL Image objects to describe.
context_json (str):
A JSON-formatted string providing additional context for the prompt.
If empty or invalid, no context will be used.
max_new_tokens (int, optional):
Maximum number of tokens to generate per image. Defaults to 256.
temperature (float, optional):
Sampling temperature controlling text randomness. Defaults to 0.7.
Returns:
List[str]: A list of text descriptions, one for each input image, in order.
"""
try:
context = json.loads(context_json) if context_json else None
except Exception:
context = None
outputs: List[str] = []
for img in images:
outputs.append(_infer_one(img, text="Describe la imagen con detalle.", max_new_tokens=max_new_tokens,
temperature=temperature, context=context))
return outputs
def face_image_embedding_casting(image):
results = _get_face_embedding_casting(image)
if not results:
return [], []
# 1) Lista de imágenes recortadas
face_crops = [r["face_crop"] for r in results]
# 2) Lista de embeddings (convertibles a JSON)
face_embeddings = [
{
"index": i,
"embedding": r["embedding"]
}
for i, r in enumerate(results)
]
return face_crops, face_embeddings
def face_image_embedding(image: Image.Image) -> List[float] | None:
"""
Endpoint to generate a face embedding for a given image.
This function wraps the core `_get_face_embedding` logic for use in endpoints.
The MTCNN and FaceNet models must be preloaded before calling this function.
Args:
image (Image.Image): Input image containing a face.
mtcnn (MTCNN): Preloaded MTCNN face detector.
facenet (InceptionResnetV1): Preloaded FaceNet model.
Returns:
list[float] | None: Normalized embedding vector or None if no face detected.
"""
return _get_face_embedding(image)
def scenes_extraction(
video_file: str,
threshold: float,
offset_frames: int,
crop_ratio: float
) -> Tuple[List[Image.Image], List[Dict]] | None:
"""
Endpoint wrapper for extracting scenes from a video.
This function acts as a wrapper around the internal `_get_scenes_extraction` function.
It handles a video file provided as a string path (as Gradio temporarily saves uploaded files)
and returns the extracted scene images along with scene metadata.
Args:
video_file (str): Path to the uploaded video file.
threshold (float): Threshold for scene detection.
offset_frames (int): Frame offset from the start of each detected scene.
crop_ratio (float): Central crop ratio to apply to each extracted frame.
Returns:
Tuple[List[Image.Image], List[Dict]] | None: A tuple containing:
- A list of PIL Images representing each extracted scene.
- A list of dictionaries with scene information (index, start time, end time).
Returns (None, None) if an error occurs during extraction.
"""
return _get_scenes_extraction(video_file, threshold, offset_frames, crop_ratio)
def describe_list_images(
images: List[Image.Image]
) -> List[str]:
"""
Endpoint wrapper for generating brief descriptions of a list of images.
This function acts as a wrapper around the internal `_get_image_list_description` function.
It takes a list of PIL Images and returns a list of short textual descriptions for each image.
Args:
images (List[Image.Image]): A list of PIL Image objects to describe.
Returns:
List[str]: A list of strings, where each string is a brief description of the corresponding image.
"""
return _get_image_list_description(images)
def add_ocr_characters_to_image(
image: Image.Image,
informacion_image: Dict[str, Any],
face_col: List[Dict[str, Any]]
) -> Dict[str, Any]:
"""
Endpoint wrapper for processing an image to extract face identities and OCR text.
This function serves as a wrapper for the internal `_get_ocr_characters_to_image`
function. It receives an image, metadata describing that image, and a collection
of stored face embeddings. The wrapped internal function performs the following:
1. Detects faces and generates embeddings for each detected face.
2. Matches these embeddings against a reference database using K-nearest neighbors.
3. Runs OCR (Optical Character Recognition) on the image to extract textual content.
4. Applies filtering to discard invalid or noisy OCR results.
5. Returns a structured dictionary containing image metadata, identified faces,
and OCR-extracted text.
Parameters
----------
image : PIL.Image.Image
The image object to be analyzed.
informacion_image : Dict[str, Any]
Metadata describing the image (such as index, start timestamp, end timestamp).
face_col : List[Dict[str, Any]]
A list of dictionaries representing stored face embeddings and related identity
information, used for similarity matching.
Returns
-------
Dict[str, Any]
A dictionary containing:
- id: the image identifier
- start: start timestamp
- end: end timestamp
- faces: detected face identities
- ocr: the extracted OCR text
"""
return _get_ocr_characters_to_image(image,informacion_image,face_col)
def extract_keyframes_endpoint(
video_path: str,
crop_ratio: float = 0.1
) -> Dict[str, Any]:
"""
Endpoint wrapper for extracting one keyframe per second from a video.
This function serves as a wrapper around the internal
`_extract_keyframes_every_second` function. It receives a path to a
video file and an optional cropping ratio, and delegates the extraction
of frames to the internal function. The wrapped internal function
performs the following:
1. Loads the video and determines its duration and FPS.
2. Extracts exactly one frame per second of video playback.
3. Crops each frame by a proportional margin and resizes it back to the
original resolution.
4. Optionally stores intermediate images in a temporary directory for
debugging purposes.
5. Returns the frames as NumPy arrays along with structured metadata
describing the extracted intervals.
Parameters
----------
video_path : str
Path to the input video file.
crop_ratio : float, optional
Percentage of the frame to crop from each border before resizing
(default is 0.1, equivalent to 10%).
Returns
-------
Dict[str, Any]
A dictionary containing:
- frames: list of extracted frames represented as NumPy arrays
- metadata: list of dictionaries with:
* index: sequential frame identifier
* start: starting timestamp of the 1-second interval
* end: ending timestamp of the interval
"""
images, frames_info = _extract_keyframes_every_second(video_path, crop_ratio)
return images, frames_info
"""
# ==============================================================================
# UI & Endpoints
# ==============================================================================
Collection of Gradio interface elements and API endpoints used by the application.
This section defines the user-facing interface for Salamandra Vision 7B,
allowing users to interact with the model through images, text prompts,
video uploads, and batch operations.
The components and endpoints in this module typically:
- Accept images, text, or video files from the user
- Apply optional parameters such as temperature, token limits, or crop ratios
- Preprocess inputs and invoke internal inference or utility functions
- Return structured outputs, including text descriptions, JSON metadata,
or image galleries
All endpoints are designed to be stateless, safe for concurrent calls,
and compatible with both interactive UI usage and programmatic API access.
# ==============================================================================
"""
def _compose_prompt(user_text: str, context: Optional[Dict] = None) -> List[Dict]:
"""
Build the chat template with an image, text, and optional context.
Args:
user_text (str): Text provided by the user.
context (Optional[Dict]): Optional additional context.
Returns:
List[Dict]: A conversation template for the model, including the image and text.
"""
ctx_txt = ""
if context:
try:
# Keep context brief and clean
ctx_txt = "\n\nAdditional context:\n" + json.dumps(context, ensure_ascii=False)[:2000]
except Exception:
pass
user_txt = (user_text or "Describe the image in detail.") + ctx_txt
convo = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": user_txt},
],
}
]
return convo
custom_css = """
h2 {
background: #e3e4e6 !important;
padding: 14px 22px !important;
border-radius: 14px !important;
box-shadow: 0 4px 12px rgba(0,0,0,0.08) !important;
display: block !important; /* ocupa tot l'ample */
width: 100% !important; /* assegura 100% */
margin: 20px auto !important;
text-align:center;
}
"""
with gr.Blocks(title="Salamandra Vision 7B · ZeroGPU", css=custom_css,theme=gr.themes.Soft()) as demo:
# Main title H1 centered
gr.Markdown('<h1 style="text-align:center">SALAMANDRA VISION 7B · ZEROGPU</h1>')
gr.Markdown("---")
# ---------------------
# Section: Facial embeddings
# ---------------------
gr.Markdown('<h2 style="text-align:center">Embeddings facials</h2>')
with gr.Row():
face_img = gr.Image(label="Imatge per embedding facial", type="pil")
with gr.Row():
face_btn = gr.Button("Obté embedding facial", variant="primary")
with gr.Row():
face_out = gr.JSON(label="Embedding facial (vector)")
face_btn.click(face_image_embedding, [face_img], face_out, api_name="face_image_embedding", concurrency_limit=1)
gr.Markdown("---")
# ---------------------
# Section: Facial embeddings casting
# ---------------------
gr.Markdown('<h2 style="text-align:center">Embeddings facials casting</h2>')
with gr.Row():
face_img = gr.Image(label="Imatge per embedding facial", type="pil")
with gr.Row():
face_btn = gr.Button("Obté embedding facial", variant="primary")
with gr.Row():
face_crops = gr.Gallery(label="Cares detectades", columns=3, height="auto")
with gr.Row():
face_embeddings = gr.JSON(label="Vectors d'embedding")
face_btn.click(
face_image_embedding_casting, # tu función
[face_img],
[face_crops, face_embeddings], # ahora 2 outputs
api_name="face_image_embedding_casting",
concurrency_limit=1
)
# ---------------------
# Section: Video scene extraction
# ---------------------
gr.Markdown('<h2 style="text-align:center">Extracció d’escenes de vídeo</h2>')
with gr.Row():
video_file = gr.Video(label="Puja un vídeo")
with gr.Row():
threshold = gr.Slider(0.0, 100.0, value=30.0, step=1.0, label="Llindar")
offset_frames = gr.Slider(0, 240.0, value=240.0, step=1.0, label="Desplaçament de frames")
crop_ratio = gr.Slider(0.0, 1.0, value=1.0, step=0.05, label="Raó de retall")
with gr.Row():
scenes_btn = gr.Button("Extreu escenes", variant="primary")
with gr.Row():
scenes_gallery_out = gr.Gallery(label="Fotogrames clau de l’escena", show_label=False, columns=4, height="auto")
scenes_info_out = gr.JSON(label="Informació de l’escena")
scenes_btn.click(
scenes_extraction,
inputs=[video_file, threshold, offset_frames, crop_ratio],
outputs=[scenes_gallery_out, scenes_info_out],
api_name="scenes_extraction",
concurrency_limit=1
)
gr.Markdown("---")
# ---------------------
# Section: Video all frame extraction
# ---------------------
gr.Markdown('<h2 style="text-align:center">Extracció d’frames de vídeo</h2>')
with gr.Row():
video_file = gr.Video(label="Puja un vídeo")
with gr.Row():
scenes_btn = gr.Button("Extreu frames", variant="primary")
with gr.Row():
scenes_gallery_out = gr.Gallery(label="Fotogrames clau de l’escena", show_label=False, columns=4, height="auto")
scenes_info_out = gr.JSON(label="Informació de l’escena")
scenes_btn.click(
extract_keyframes_endpoint,
inputs=[video_file],
outputs=[scenes_gallery_out, scenes_info_out],
api_name="keyframes_every_second_extraction",
concurrency_limit=1
)
gr.Markdown("---")
# ---------------------
# Section: Batch description with Salamandra Vision
# ---------------------
gr.Markdown('<h2 style="text-align:center">Descripció per lots amb Salamandra Vision</h2>')
with gr.Row():
img_input = gr.Gallery(label="Llot d’imatges", show_label=False)
with gr.Row():
describe_btn = gr.Button("Genera descripcions", variant="primary")
with gr.Row():
desc_output = gr.Textbox(label="Descripcions de les imatges")
describe_btn.click(
describe_list_images,
inputs=[img_input],
outputs=desc_output,
api_name="describe_images",
concurrency_limit=1
)
gr.Markdown("---")
# ---------------------
# Section: Add OCR and characters to image
# ---------------------
gr.Markdown('<h2 style="text-align:center">Afegiu OCR i informació de caràcters al vídeo</h2>')
with gr.Row():
img_input = gr.Image(label="Imatge per ampliar la descripció", type="pil")
info_input = gr.Textbox(
label="Diccionari informacion_image (format JSON)",
placeholder='{"index": 0, "start": 0.0, "end": 1.2}',
lines=3
)
with gr.Row():
faces_input = gr.Textbox(
label="Llistat de diccionaris face_col (format JSON)",
placeholder='[{"nombre": "Anna", "embedding": [0.12, 0.88, ...]}, ...]',
lines=5
)
with gr.Row():
process_btn = gr.Button("Processar imatge (OCR + Persones)", variant="primary")
with gr.Row():
output_json = gr.JSON(label="Resultat complet")
process_btn.click(
add_ocr_characters_to_image,
inputs=[img_input, info_input, faces_input],
outputs=output_json,
api_name="add_ocr_and_faces",
concurrency_limit=1
)
# ---------------------
# Section: Single image inference
# ---------------------
gr.Markdown('<h2 style="text-align:center">Inferència per imatge única</h2>')
with gr.Row():
with gr.Column():
in_img = gr.Image(label="Imatge", type="pil")
in_txt = gr.Textbox(label="Text/prompt", value="Descriu la imatge amb detall (ES/CA).")
max_new = gr.Slider(16, 1024, value=256, step=16, label="màx_tokens nous")
temp = gr.Slider(0.0, 1.5, value=0.7, step=0.05, label="temperatura")
btn = gr.Button("Genera", variant="primary")
with gr.Column():
out = gr.Textbox(label="Descripció", lines=18)
btn.click(_infer_one, [in_img, in_txt, max_new, temp], out, api_name="describe", concurrency_limit=1)
gr.Markdown("---")
# ---------------------
# Section: Batch images
# ---------------------
gr.Markdown('<h2 style="text-align:center">Llot d’imatges</h2>')
batch_in_images = gr.Gallery(label="Llot d’imatges", show_label=False, columns=4, height="auto")
batch_context = gr.Textbox(label="context_json", value="{}", lines=4)
batch_max = gr.Slider(16, 1024, value=256, step=16, label="màx_tokens nous")
batch_temp = gr.Slider(0.0, 1.5, value=0.7, step=0.05, label="temperatura")
batch_btn = gr.Button("Descriu el lot", variant="primary")
batch_out = gr.JSON(label="Descripcions (llista)")
batch_btn.click(
describe_batch,
[batch_in_images, batch_context, batch_max, batch_temp],
batch_out,
api_name="predict",
concurrency_limit=1
)
gr.Markdown("---")
demo.queue(max_size=16).launch(show_error=True,share=True)
|