Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,8 @@
|
|
| 1 |
# app.py — veureu/svision (Salamandra Vision 7B · ZeroGPU) — compatible con ENGINE
|
| 2 |
import os
|
| 3 |
import json
|
| 4 |
-
from typing import Dict, List, Optional, Tuple, Union
|
|
|
|
| 5 |
|
| 6 |
import gradio as gr
|
| 7 |
import spaces
|
|
@@ -11,6 +12,11 @@ import numpy as np
|
|
| 11 |
from PIL import Image
|
| 12 |
from transformers import AutoProcessor, LlavaOnevisionForConditionalGeneration
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
MODEL_ID = os.environ.get("MODEL_ID", "BSC-LT/salamandra-7b-vision")
|
| 15 |
DTYPE = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 16 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
|
@@ -131,6 +137,46 @@ def face_image_embedding(image: Image.Image) -> List[float] | None:
|
|
| 131 |
print(f"Fallo embedding cara: {e}")
|
| 132 |
return None
|
| 133 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
|
| 135 |
# ----------------------------- UI & Endpoints --------------------------------
|
| 136 |
|
|
@@ -179,6 +225,15 @@ with gr.Blocks(title="Salamandra Vision 7B · ZeroGPU") as demo:
|
|
| 179 |
face_out = gr.JSON(label="Embedding facial (vector)")
|
| 180 |
face_btn.click(face_image_embedding, [face_img], face_out, api_name="face_image_embedding", concurrency_limit=1)
|
| 181 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
|
| 183 |
demo.queue(max_size=16).launch()
|
| 184 |
|
|
|
|
| 1 |
# app.py — veureu/svision (Salamandra Vision 7B · ZeroGPU) — compatible con ENGINE
|
| 2 |
import os
|
| 3 |
import json
|
| 4 |
+
from typing import Dict, List, Optional, Tuple, Union, Any
|
| 5 |
+
import io
|
| 6 |
|
| 7 |
import gradio as gr
|
| 8 |
import spaces
|
|
|
|
| 12 |
from PIL import Image
|
| 13 |
from transformers import AutoProcessor, LlavaOnevisionForConditionalGeneration
|
| 14 |
|
| 15 |
+
import cv2
|
| 16 |
+
from scenedetect import VideoManager, SceneManager
|
| 17 |
+
from scenedetect.detectors import ContentDetector
|
| 18 |
+
|
| 19 |
+
|
| 20 |
MODEL_ID = os.environ.get("MODEL_ID", "BSC-LT/salamandra-7b-vision")
|
| 21 |
DTYPE = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 22 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
| 137 |
print(f"Fallo embedding cara: {e}")
|
| 138 |
return None
|
| 139 |
|
| 140 |
+
@spaces.GPU
|
| 141 |
+
def scenes_extraction(video_file: io.IOBase, threshold: float, offset_frames: int, crop_ratio: float) -> Tuple[List[Image.Image], List[Dict]] | None:
|
| 142 |
+
# Detectamos las escenas
|
| 143 |
+
video_path = video_file.name
|
| 144 |
+
video_manager = VideoManager([video_path])
|
| 145 |
+
scene_manager = SceneManager()
|
| 146 |
+
scene_manager.add_detector(ContentDetector(threshold=threshold))
|
| 147 |
+
video_manager.start()
|
| 148 |
+
scene_manager.detect_scenes(video_manager)
|
| 149 |
+
scene_list = scene_manager.get_scene_list()
|
| 150 |
+
|
| 151 |
+
cap = cv2.VideoCapture(video_path)
|
| 152 |
+
images: List[Image.Image] = []
|
| 153 |
+
informacion_escenas: List[Dict] = []
|
| 154 |
+
|
| 155 |
+
for i, (start_time, end_time) in enumerate(scene_list):
|
| 156 |
+
frame_number = int(start_time.get_frames()) + offset_frames
|
| 157 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_number)
|
| 158 |
+
ret, frame = cap.read()
|
| 159 |
+
if ret:
|
| 160 |
+
h, w = frame.shape[:2]
|
| 161 |
+
|
| 162 |
+
# Ahora realizamos el recorte
|
| 163 |
+
ch, cw = int(h * crop_ratio), int(w * crop_ratio)
|
| 164 |
+
frame = frame[ch:h-ch, cw:w-cw]
|
| 165 |
+
|
| 166 |
+
# Guardamos la escena obtenida
|
| 167 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 168 |
+
img = Image.fromarray(frame_rgb)
|
| 169 |
+
images.append(img)
|
| 170 |
+
|
| 171 |
+
# Guardamos la información de la escena
|
| 172 |
+
informacion_escenas.append({
|
| 173 |
+
"index": i+1,
|
| 174 |
+
"start": start_time.get_seconds(),
|
| 175 |
+
"end": end_time.get_seconds()
|
| 176 |
+
})
|
| 177 |
+
|
| 178 |
+
cap.release()
|
| 179 |
+
return images, informacion_escenas
|
| 180 |
|
| 181 |
# ----------------------------- UI & Endpoints --------------------------------
|
| 182 |
|
|
|
|
| 225 |
face_out = gr.JSON(label="Embedding facial (vector)")
|
| 226 |
face_btn.click(face_image_embedding, [face_img], face_out, api_name="face_image_embedding", concurrency_limit=1)
|
| 227 |
|
| 228 |
+
with gr.Row():
|
| 229 |
+
video_file = gr.Video(label="Sube un vídeo", type="file")
|
| 230 |
+
threshold = gr.Slider(0.0, 100.0, value=30.0, step=1.0, label="Threshold")
|
| 231 |
+
offset_frames = gr.Slider(0, 30, value=5, step=1, label="Offset frames")
|
| 232 |
+
crop_ratio = gr.Slider(0.0, 1.0, value=1.0, step=0.05, label="Crop ratio")
|
| 233 |
+
scenes_btn = gr.Button("Extraer escenas")
|
| 234 |
+
scenes_gallery_out = gr.Gallery(label="Keyframes de escenas", show_label=False, columns=4, height="auto")
|
| 235 |
+
scenes_info_out = gr.JSON(label="Información de escenas")
|
| 236 |
+
scenes_btn.click(scenes_extraction, inputs=[video_file, threshold, offset_frames, crop_ratio], outputs=[scenes_gallery_out, scenes_info_out], api_name="scenes_extraction", concurrency_limit=1)
|
| 237 |
|
| 238 |
demo.queue(max_size=16).launch()
|
| 239 |
|