Update app.py
Browse files
app.py
CHANGED
|
@@ -15,11 +15,19 @@ MODEL_ID = os.environ.get("MODEL_ID", "BSC-LT/salamandra-7b-vision")
|
|
| 15 |
DTYPE = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 16 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 17 |
|
| 18 |
-
mtcnn = MTCNN(image_size=160, margin=0, post_process=True, device=DEVICE)
|
| 19 |
-
facenet = InceptionResnetV1(pretrained='vggface2').eval().to(DEVICE)
|
| 20 |
-
|
| 21 |
_model = None
|
| 22 |
_processor = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
|
| 25 |
def _lazy_load() -> Tuple[LlavaOnevisionForConditionalGeneration, AutoProcessor]:
|
|
@@ -96,8 +104,10 @@ def describe_batch(images: List[Image.Image], context_json: str,
|
|
| 96 |
return outputs
|
| 97 |
|
| 98 |
|
|
|
|
| 99 |
def face_image_embedding(image: Image.Image) -> List[float] | None:
|
| 100 |
try:
|
|
|
|
| 101 |
# detectar y extraer cara
|
| 102 |
face = mtcnn(image)
|
| 103 |
|
|
@@ -105,7 +115,8 @@ def face_image_embedding(image: Image.Image) -> List[float] | None:
|
|
| 105 |
return None
|
| 106 |
|
| 107 |
# FaceNet espera tensor shape (1,3,160,160)
|
| 108 |
-
|
|
|
|
| 109 |
|
| 110 |
# obtener embedding
|
| 111 |
with torch.no_grad():
|
|
|
|
| 15 |
DTYPE = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 16 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 17 |
|
|
|
|
|
|
|
|
|
|
| 18 |
_model = None
|
| 19 |
_processor = None
|
| 20 |
+
_mtcnn = None
|
| 21 |
+
_facenet = None
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def _load_face_models() -> Tuple[MTCNN, InceptionResnetV1]:
|
| 25 |
+
global _mtcnn, _facenet
|
| 26 |
+
if _mtcnn is None or _facenet is None:
|
| 27 |
+
device = DEVICE if DEVICE == "cuda" and torch.cuda.is_available() else "cpu"
|
| 28 |
+
_mtcnn = MTCNN(image_size=160, margin=0, post_process=True, device=device)
|
| 29 |
+
_facenet = InceptionResnetV1(pretrained="vggface2").eval().to(device)
|
| 30 |
+
return _mtcnn, _facenet
|
| 31 |
|
| 32 |
|
| 33 |
def _lazy_load() -> Tuple[LlavaOnevisionForConditionalGeneration, AutoProcessor]:
|
|
|
|
| 104 |
return outputs
|
| 105 |
|
| 106 |
|
| 107 |
+
@spaces.GPU
|
| 108 |
def face_image_embedding(image: Image.Image) -> List[float] | None:
|
| 109 |
try:
|
| 110 |
+
mtcnn, facenet = _load_face_models()
|
| 111 |
# detectar y extraer cara
|
| 112 |
face = mtcnn(image)
|
| 113 |
|
|
|
|
| 115 |
return None
|
| 116 |
|
| 117 |
# FaceNet espera tensor shape (1,3,160,160)
|
| 118 |
+
device = DEVICE if DEVICE == "cuda" and torch.cuda.is_available() else "cpu"
|
| 119 |
+
face = face.unsqueeze(0).to(device)
|
| 120 |
|
| 121 |
# obtener embedding
|
| 122 |
with torch.no_grad():
|