Update app.py
Browse files
app.py
CHANGED
|
@@ -6,7 +6,7 @@ from typing import Dict, List, Optional, Tuple, Union
|
|
| 6 |
import gradio as gr
|
| 7 |
import spaces
|
| 8 |
import torch
|
| 9 |
-
import
|
| 10 |
import numpy as np
|
| 11 |
from PIL import Image
|
| 12 |
from transformers import AutoProcessor, LlavaOnevisionForConditionalGeneration
|
|
@@ -15,6 +15,9 @@ MODEL_ID = os.environ.get("MODEL_ID", "BSC-LT/salamandra-7b-vision")
|
|
| 15 |
DTYPE = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 16 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 17 |
|
|
|
|
|
|
|
|
|
|
| 18 |
_model = None
|
| 19 |
_processor = None
|
| 20 |
|
|
@@ -93,18 +96,29 @@ def describe_batch(images: List[Image.Image], context_json: str,
|
|
| 93 |
return outputs
|
| 94 |
|
| 95 |
|
| 96 |
-
def face_image_embedding(image: Image.Image) -> List[float]:
|
| 97 |
try:
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
return
|
| 103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
except Exception as e:
|
| 105 |
print(f"Fallo embedding cara: {e}")
|
| 106 |
-
|
| 107 |
-
return None
|
| 108 |
|
| 109 |
|
| 110 |
# ----------------------------- UI & Endpoints --------------------------------
|
|
|
|
| 6 |
import gradio as gr
|
| 7 |
import spaces
|
| 8 |
import torch
|
| 9 |
+
from facenet_pytorch import MTCNN, InceptionResnetV1
|
| 10 |
import numpy as np
|
| 11 |
from PIL import Image
|
| 12 |
from transformers import AutoProcessor, LlavaOnevisionForConditionalGeneration
|
|
|
|
| 15 |
DTYPE = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 16 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 17 |
|
| 18 |
+
mtcnn = MTCNN(image_size=160, margin=0, post_process=True, device=DEVICE)
|
| 19 |
+
facenet = InceptionResnetV1(pretrained='vggface2').eval().to(DEVICE)
|
| 20 |
+
|
| 21 |
_model = None
|
| 22 |
_processor = None
|
| 23 |
|
|
|
|
| 96 |
return outputs
|
| 97 |
|
| 98 |
|
| 99 |
+
def face_image_embedding(image: Image.Image) -> List[float] | None:
|
| 100 |
try:
|
| 101 |
+
# detectar y extraer cara
|
| 102 |
+
face = mtcnn(image)
|
| 103 |
+
|
| 104 |
+
if face is None:
|
| 105 |
+
return None
|
| 106 |
+
|
| 107 |
+
# FaceNet espera tensor shape (1,3,160,160)
|
| 108 |
+
face = face.unsqueeze(0).to(DEVICE)
|
| 109 |
+
|
| 110 |
+
# obtener embedding
|
| 111 |
+
with torch.no_grad():
|
| 112 |
+
emb = facenet(face).cpu().numpy()[0]
|
| 113 |
+
|
| 114 |
+
# normalizar igual que tu c贸digo original
|
| 115 |
+
emb = emb / np.linalg.norm(emb)
|
| 116 |
+
|
| 117 |
+
return emb.astype(float).tolist()
|
| 118 |
+
|
| 119 |
except Exception as e:
|
| 120 |
print(f"Fallo embedding cara: {e}")
|
| 121 |
+
return None
|
|
|
|
| 122 |
|
| 123 |
|
| 124 |
# ----------------------------- UI & Endpoints --------------------------------
|