likhonsheikhdev's picture
Upload folder using huggingface_hub
ab0cf4f verified
raw
history blame
6.85 kB
"""
Docker Model Runner - CPU-Optimized FastAPI application
Optimized for: 2 vCPU, 16GB RAM
"""
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from typing import Optional, List
import torch
from transformers import pipeline, AutoTokenizer, AutoModel
import os
from datetime import datetime
from contextlib import asynccontextmanager
# CPU-optimized lightweight models
MODEL_NAME = os.getenv("MODEL_NAME", "distilbert-base-uncased-finetuned-sst-2-english")
GENERATOR_MODEL = os.getenv("GENERATOR_MODEL", "distilgpt2")
EMBED_MODEL = os.getenv("EMBED_MODEL", "sentence-transformers/all-MiniLM-L6-v2")
# Set CPU threading
torch.set_num_threads(2)
# Global model cache
models = {}
def load_models():
"""Pre-load models for faster inference"""
global models
print("Loading models for CPU inference...")
# Use smaller, faster models optimized for CPU
models["classifier"] = pipeline(
"text-classification",
model=MODEL_NAME,
device=-1, # CPU
torch_dtype=torch.float32
)
models["generator"] = pipeline(
"text-generation",
model=GENERATOR_MODEL,
device=-1,
torch_dtype=torch.float32
)
# Lightweight embedding model
models["tokenizer"] = AutoTokenizer.from_pretrained(EMBED_MODEL)
models["embedder"] = AutoModel.from_pretrained(EMBED_MODEL)
models["embedder"].eval()
print("✅ All models loaded successfully!")
@asynccontextmanager
async def lifespan(app: FastAPI):
load_models()
yield
models.clear()
app = FastAPI(
title="Docker Model Runner",
description="CPU-Optimized HuggingFace Space with named endpoints",
version="1.0.0",
lifespan=lifespan
)
# Request/Response Models
class PredictRequest(BaseModel):
text: str
top_k: Optional[int] = 1
class PredictResponse(BaseModel):
predictions: List[dict]
model: str
latency_ms: float
class GenerateRequest(BaseModel):
prompt: str
max_length: Optional[int] = 50
num_return_sequences: Optional[int] = 1
temperature: Optional[float] = 0.7
class GenerateResponse(BaseModel):
generated_text: List[str]
model: str
latency_ms: float
class EmbedRequest(BaseModel):
texts: List[str]
class EmbedResponse(BaseModel):
embeddings: List[List[float]]
model: str
dimensions: int
latency_ms: float
class HealthResponse(BaseModel):
status: str
timestamp: str
hardware: str
models_loaded: bool
class InfoResponse(BaseModel):
name: str
version: str
hardware: str
models: dict
endpoints: List[str]
# Named Endpoints
@app.get("/")
async def root():
"""Welcome endpoint"""
return {
"message": "Docker Model Runner API (CPU Optimized)",
"hardware": "CPU Basic: 2 vCPU · 16 GB RAM",
"docs": "/docs",
"endpoints": ["/health", "/info", "/predict", "/generate", "/embed"]
}
@app.get("/health", response_model=HealthResponse)
async def health():
"""Health check endpoint"""
return HealthResponse(
status="healthy",
timestamp=datetime.utcnow().isoformat(),
hardware="CPU Basic: 2 vCPU · 16 GB RAM",
models_loaded=len(models) > 0
)
@app.get("/info", response_model=InfoResponse)
async def info():
"""Model and API information"""
return InfoResponse(
name="Docker Model Runner",
version="1.0.0",
hardware="CPU Basic: 2 vCPU · 16 GB RAM",
models={
"classifier": MODEL_NAME,
"generator": GENERATOR_MODEL,
"embedder": EMBED_MODEL
},
endpoints=["/", "/health", "/info", "/predict", "/generate", "/embed"]
)
@app.post("/predict", response_model=PredictResponse)
async def predict(request: PredictRequest):
"""
Run text classification (sentiment analysis)
- **text**: Input text to classify
- **top_k**: Number of top predictions to return
"""
try:
start_time = datetime.now()
results = models["classifier"](request.text, top_k=request.top_k)
latency = (datetime.now() - start_time).total_seconds() * 1000
return PredictResponse(
predictions=results,
model=MODEL_NAME,
latency_ms=round(latency, 2)
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/generate", response_model=GenerateResponse)
async def generate(request: GenerateRequest):
"""
Generate text from a prompt
- **prompt**: Input prompt for generation
- **max_length**: Maximum length of generated text (default: 50)
- **temperature**: Sampling temperature (default: 0.7)
"""
try:
start_time = datetime.now()
results = models["generator"](
request.prompt,
max_length=request.max_length,
num_return_sequences=request.num_return_sequences,
temperature=request.temperature,
do_sample=True,
pad_token_id=50256 # GPT2 pad token
)
latency = (datetime.now() - start_time).total_seconds() * 1000
generated_texts = [r["generated_text"] for r in results]
return GenerateResponse(
generated_text=generated_texts,
model=GENERATOR_MODEL,
latency_ms=round(latency, 2)
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/embed", response_model=EmbedResponse)
async def embed(request: EmbedRequest):
"""
Get text embeddings using MiniLM (384 dimensions)
- **texts**: List of texts to embed
"""
try:
start_time = datetime.now()
# Tokenize
inputs = models["tokenizer"](
request.texts,
padding=True,
truncation=True,
max_length=256,
return_tensors="pt"
)
# Get embeddings
with torch.no_grad():
outputs = models["embedder"](**inputs)
# Mean pooling
attention_mask = inputs["attention_mask"]
token_embeddings = outputs.last_hidden_state
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
latency = (datetime.now() - start_time).total_seconds() * 1000
return EmbedResponse(
embeddings=embeddings.tolist(),
model=EMBED_MODEL,
dimensions=embeddings.shape[1],
latency_ms=round(latency, 2)
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)