File size: 6,846 Bytes
09b5534
ab0cf4f
 
09b5534
 
 
 
 
 
 
 
ab0cf4f
09b5534
ab0cf4f
 
 
 
 
 
 
09b5534
ab0cf4f
 
09b5534
 
ab0cf4f
 
 
 
09b5534
ab0cf4f
 
 
 
 
 
 
 
 
 
 
 
 
 
09b5534
ab0cf4f
 
 
 
09b5534
ab0cf4f
09b5534
 
ab0cf4f
 
 
 
 
 
 
 
 
 
 
 
 
09b5534
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab0cf4f
09b5534
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab0cf4f
 
09b5534
 
 
 
 
ab0cf4f
09b5534
 
 
 
 
 
 
 
 
ab0cf4f
 
09b5534
 
 
 
 
 
 
 
 
 
 
ab0cf4f
 
09b5534
 
 
 
 
 
 
 
 
ab0cf4f
09b5534
 
 
ab0cf4f
09b5534
 
 
 
 
 
 
 
ab0cf4f
09b5534
 
 
 
 
 
ab0cf4f
09b5534
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab0cf4f
 
09b5534
 
 
ab0cf4f
09b5534
 
 
 
ab0cf4f
 
09b5534
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab0cf4f
09b5534
 
 
 
 
 
ab0cf4f
 
09b5534
 
 
ab0cf4f
09b5534
 
 
ab0cf4f
09b5534
ab0cf4f
 
 
 
 
 
09b5534
 
 
 
 
ab0cf4f
09b5534
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
"""
Docker Model Runner - CPU-Optimized FastAPI application
Optimized for: 2 vCPU, 16GB RAM
"""
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from typing import Optional, List
import torch
from transformers import pipeline, AutoTokenizer, AutoModel
import os
from datetime import datetime
from contextlib import asynccontextmanager

# CPU-optimized lightweight models
MODEL_NAME = os.getenv("MODEL_NAME", "distilbert-base-uncased-finetuned-sst-2-english")
GENERATOR_MODEL = os.getenv("GENERATOR_MODEL", "distilgpt2")
EMBED_MODEL = os.getenv("EMBED_MODEL", "sentence-transformers/all-MiniLM-L6-v2")

# Set CPU threading
torch.set_num_threads(2)

# Global model cache
models = {}


def load_models():
    """Pre-load models for faster inference"""
    global models
    print("Loading models for CPU inference...")

    # Use smaller, faster models optimized for CPU
    models["classifier"] = pipeline(
        "text-classification",
        model=MODEL_NAME,
        device=-1,  # CPU
        torch_dtype=torch.float32
    )

    models["generator"] = pipeline(
        "text-generation",
        model=GENERATOR_MODEL,
        device=-1,
        torch_dtype=torch.float32
    )

    # Lightweight embedding model
    models["tokenizer"] = AutoTokenizer.from_pretrained(EMBED_MODEL)
    models["embedder"] = AutoModel.from_pretrained(EMBED_MODEL)
    models["embedder"].eval()

    print("✅ All models loaded successfully!")


@asynccontextmanager
async def lifespan(app: FastAPI):
    load_models()
    yield
    models.clear()


app = FastAPI(
    title="Docker Model Runner",
    description="CPU-Optimized HuggingFace Space with named endpoints",
    version="1.0.0",
    lifespan=lifespan
)


# Request/Response Models
class PredictRequest(BaseModel):
    text: str
    top_k: Optional[int] = 1


class PredictResponse(BaseModel):
    predictions: List[dict]
    model: str
    latency_ms: float


class GenerateRequest(BaseModel):
    prompt: str
    max_length: Optional[int] = 50
    num_return_sequences: Optional[int] = 1
    temperature: Optional[float] = 0.7


class GenerateResponse(BaseModel):
    generated_text: List[str]
    model: str
    latency_ms: float


class EmbedRequest(BaseModel):
    texts: List[str]


class EmbedResponse(BaseModel):
    embeddings: List[List[float]]
    model: str
    dimensions: int
    latency_ms: float


class HealthResponse(BaseModel):
    status: str
    timestamp: str
    hardware: str
    models_loaded: bool


class InfoResponse(BaseModel):
    name: str
    version: str
    hardware: str
    models: dict
    endpoints: List[str]


# Named Endpoints
@app.get("/")
async def root():
    """Welcome endpoint"""
    return {
        "message": "Docker Model Runner API (CPU Optimized)",
        "hardware": "CPU Basic: 2 vCPU · 16 GB RAM",
        "docs": "/docs",
        "endpoints": ["/health", "/info", "/predict", "/generate", "/embed"]
    }


@app.get("/health", response_model=HealthResponse)
async def health():
    """Health check endpoint"""
    return HealthResponse(
        status="healthy",
        timestamp=datetime.utcnow().isoformat(),
        hardware="CPU Basic: 2 vCPU · 16 GB RAM",
        models_loaded=len(models) > 0
    )


@app.get("/info", response_model=InfoResponse)
async def info():
    """Model and API information"""
    return InfoResponse(
        name="Docker Model Runner",
        version="1.0.0",
        hardware="CPU Basic: 2 vCPU · 16 GB RAM",
        models={
            "classifier": MODEL_NAME,
            "generator": GENERATOR_MODEL,
            "embedder": EMBED_MODEL
        },
        endpoints=["/", "/health", "/info", "/predict", "/generate", "/embed"]
    )


@app.post("/predict", response_model=PredictResponse)
async def predict(request: PredictRequest):
    """
    Run text classification (sentiment analysis)

    - **text**: Input text to classify
    - **top_k**: Number of top predictions to return
    """
    try:
        start_time = datetime.now()
        results = models["classifier"](request.text, top_k=request.top_k)
        latency = (datetime.now() - start_time).total_seconds() * 1000

        return PredictResponse(
            predictions=results,
            model=MODEL_NAME,
            latency_ms=round(latency, 2)
        )
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))


@app.post("/generate", response_model=GenerateResponse)
async def generate(request: GenerateRequest):
    """
    Generate text from a prompt

    - **prompt**: Input prompt for generation
    - **max_length**: Maximum length of generated text (default: 50)
    - **temperature**: Sampling temperature (default: 0.7)
    """
    try:
        start_time = datetime.now()
        results = models["generator"](
            request.prompt,
            max_length=request.max_length,
            num_return_sequences=request.num_return_sequences,
            temperature=request.temperature,
            do_sample=True,
            pad_token_id=50256  # GPT2 pad token
        )
        latency = (datetime.now() - start_time).total_seconds() * 1000

        generated_texts = [r["generated_text"] for r in results]

        return GenerateResponse(
            generated_text=generated_texts,
            model=GENERATOR_MODEL,
            latency_ms=round(latency, 2)
        )
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))


@app.post("/embed", response_model=EmbedResponse)
async def embed(request: EmbedRequest):
    """
    Get text embeddings using MiniLM (384 dimensions)

    - **texts**: List of texts to embed
    """
    try:
        start_time = datetime.now()

        # Tokenize
        inputs = models["tokenizer"](
            request.texts,
            padding=True,
            truncation=True,
            max_length=256,
            return_tensors="pt"
        )

        # Get embeddings
        with torch.no_grad():
            outputs = models["embedder"](**inputs)
            # Mean pooling
            attention_mask = inputs["attention_mask"]
            token_embeddings = outputs.last_hidden_state
            input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
            embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)

        latency = (datetime.now() - start_time).total_seconds() * 1000

        return EmbedResponse(
            embeddings=embeddings.tolist(),
            model=EMBED_MODEL,
            dimensions=embeddings.shape[1],
            latency_ms=round(latency, 2)
        )
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))


if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=7860)