File size: 6,846 Bytes
09b5534 ab0cf4f 09b5534 ab0cf4f 09b5534 ab0cf4f 09b5534 ab0cf4f 09b5534 ab0cf4f 09b5534 ab0cf4f 09b5534 ab0cf4f 09b5534 ab0cf4f 09b5534 ab0cf4f 09b5534 ab0cf4f 09b5534 ab0cf4f 09b5534 ab0cf4f 09b5534 ab0cf4f 09b5534 ab0cf4f 09b5534 ab0cf4f 09b5534 ab0cf4f 09b5534 ab0cf4f 09b5534 ab0cf4f 09b5534 ab0cf4f 09b5534 ab0cf4f 09b5534 ab0cf4f 09b5534 ab0cf4f 09b5534 ab0cf4f 09b5534 ab0cf4f 09b5534 ab0cf4f 09b5534 ab0cf4f 09b5534 ab0cf4f 09b5534 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
"""
Docker Model Runner - CPU-Optimized FastAPI application
Optimized for: 2 vCPU, 16GB RAM
"""
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from typing import Optional, List
import torch
from transformers import pipeline, AutoTokenizer, AutoModel
import os
from datetime import datetime
from contextlib import asynccontextmanager
# CPU-optimized lightweight models
MODEL_NAME = os.getenv("MODEL_NAME", "distilbert-base-uncased-finetuned-sst-2-english")
GENERATOR_MODEL = os.getenv("GENERATOR_MODEL", "distilgpt2")
EMBED_MODEL = os.getenv("EMBED_MODEL", "sentence-transformers/all-MiniLM-L6-v2")
# Set CPU threading
torch.set_num_threads(2)
# Global model cache
models = {}
def load_models():
"""Pre-load models for faster inference"""
global models
print("Loading models for CPU inference...")
# Use smaller, faster models optimized for CPU
models["classifier"] = pipeline(
"text-classification",
model=MODEL_NAME,
device=-1, # CPU
torch_dtype=torch.float32
)
models["generator"] = pipeline(
"text-generation",
model=GENERATOR_MODEL,
device=-1,
torch_dtype=torch.float32
)
# Lightweight embedding model
models["tokenizer"] = AutoTokenizer.from_pretrained(EMBED_MODEL)
models["embedder"] = AutoModel.from_pretrained(EMBED_MODEL)
models["embedder"].eval()
print("✅ All models loaded successfully!")
@asynccontextmanager
async def lifespan(app: FastAPI):
load_models()
yield
models.clear()
app = FastAPI(
title="Docker Model Runner",
description="CPU-Optimized HuggingFace Space with named endpoints",
version="1.0.0",
lifespan=lifespan
)
# Request/Response Models
class PredictRequest(BaseModel):
text: str
top_k: Optional[int] = 1
class PredictResponse(BaseModel):
predictions: List[dict]
model: str
latency_ms: float
class GenerateRequest(BaseModel):
prompt: str
max_length: Optional[int] = 50
num_return_sequences: Optional[int] = 1
temperature: Optional[float] = 0.7
class GenerateResponse(BaseModel):
generated_text: List[str]
model: str
latency_ms: float
class EmbedRequest(BaseModel):
texts: List[str]
class EmbedResponse(BaseModel):
embeddings: List[List[float]]
model: str
dimensions: int
latency_ms: float
class HealthResponse(BaseModel):
status: str
timestamp: str
hardware: str
models_loaded: bool
class InfoResponse(BaseModel):
name: str
version: str
hardware: str
models: dict
endpoints: List[str]
# Named Endpoints
@app.get("/")
async def root():
"""Welcome endpoint"""
return {
"message": "Docker Model Runner API (CPU Optimized)",
"hardware": "CPU Basic: 2 vCPU · 16 GB RAM",
"docs": "/docs",
"endpoints": ["/health", "/info", "/predict", "/generate", "/embed"]
}
@app.get("/health", response_model=HealthResponse)
async def health():
"""Health check endpoint"""
return HealthResponse(
status="healthy",
timestamp=datetime.utcnow().isoformat(),
hardware="CPU Basic: 2 vCPU · 16 GB RAM",
models_loaded=len(models) > 0
)
@app.get("/info", response_model=InfoResponse)
async def info():
"""Model and API information"""
return InfoResponse(
name="Docker Model Runner",
version="1.0.0",
hardware="CPU Basic: 2 vCPU · 16 GB RAM",
models={
"classifier": MODEL_NAME,
"generator": GENERATOR_MODEL,
"embedder": EMBED_MODEL
},
endpoints=["/", "/health", "/info", "/predict", "/generate", "/embed"]
)
@app.post("/predict", response_model=PredictResponse)
async def predict(request: PredictRequest):
"""
Run text classification (sentiment analysis)
- **text**: Input text to classify
- **top_k**: Number of top predictions to return
"""
try:
start_time = datetime.now()
results = models["classifier"](request.text, top_k=request.top_k)
latency = (datetime.now() - start_time).total_seconds() * 1000
return PredictResponse(
predictions=results,
model=MODEL_NAME,
latency_ms=round(latency, 2)
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/generate", response_model=GenerateResponse)
async def generate(request: GenerateRequest):
"""
Generate text from a prompt
- **prompt**: Input prompt for generation
- **max_length**: Maximum length of generated text (default: 50)
- **temperature**: Sampling temperature (default: 0.7)
"""
try:
start_time = datetime.now()
results = models["generator"](
request.prompt,
max_length=request.max_length,
num_return_sequences=request.num_return_sequences,
temperature=request.temperature,
do_sample=True,
pad_token_id=50256 # GPT2 pad token
)
latency = (datetime.now() - start_time).total_seconds() * 1000
generated_texts = [r["generated_text"] for r in results]
return GenerateResponse(
generated_text=generated_texts,
model=GENERATOR_MODEL,
latency_ms=round(latency, 2)
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/embed", response_model=EmbedResponse)
async def embed(request: EmbedRequest):
"""
Get text embeddings using MiniLM (384 dimensions)
- **texts**: List of texts to embed
"""
try:
start_time = datetime.now()
# Tokenize
inputs = models["tokenizer"](
request.texts,
padding=True,
truncation=True,
max_length=256,
return_tensors="pt"
)
# Get embeddings
with torch.no_grad():
outputs = models["embedder"](**inputs)
# Mean pooling
attention_mask = inputs["attention_mask"]
token_embeddings = outputs.last_hidden_state
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
latency = (datetime.now() - start_time).total_seconds() * 1000
return EmbedResponse(
embeddings=embeddings.tolist(),
model=EMBED_MODEL,
dimensions=embeddings.shape[1],
latency_ms=round(latency, 2)
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)
|