Upload folder using huggingface_hub
Browse files- Dockerfile +19 -4
- README.md +14 -14
- main.py +77 -53
- requirements.txt +3 -1
Dockerfile
CHANGED
|
@@ -2,14 +2,25 @@ FROM python:3.11-slim
|
|
| 2 |
|
| 3 |
WORKDIR /app
|
| 4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
# Install system dependencies
|
| 6 |
RUN apt-get update && apt-get install -y --no-install-recommends \
|
| 7 |
build-essential \
|
| 8 |
&& rm -rf /var/lib/apt/lists/*
|
| 9 |
|
| 10 |
-
#
|
|
|
|
|
|
|
|
|
|
| 11 |
COPY requirements.txt .
|
| 12 |
-
RUN pip install --no-cache-dir
|
|
|
|
|
|
|
| 13 |
|
| 14 |
# Copy application code
|
| 15 |
COPY . .
|
|
@@ -18,8 +29,12 @@ COPY . .
|
|
| 18 |
RUN useradd -m -u 1000 user
|
| 19 |
USER user
|
| 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
# Expose port
|
| 22 |
EXPOSE 7860
|
| 23 |
|
| 24 |
-
# Run
|
| 25 |
-
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860"]
|
|
|
|
| 2 |
|
| 3 |
WORKDIR /app
|
| 4 |
|
| 5 |
+
# Set environment variables for CPU optimization
|
| 6 |
+
ENV OMP_NUM_THREADS=2
|
| 7 |
+
ENV MKL_NUM_THREADS=2
|
| 8 |
+
ENV TOKENIZERS_PARALLELISM=true
|
| 9 |
+
ENV TRANSFORMERS_OFFLINE=0
|
| 10 |
+
|
| 11 |
# Install system dependencies
|
| 12 |
RUN apt-get update && apt-get install -y --no-install-recommends \
|
| 13 |
build-essential \
|
| 14 |
&& rm -rf /var/lib/apt/lists/*
|
| 15 |
|
| 16 |
+
# Install PyTorch CPU version first
|
| 17 |
+
RUN pip install --no-cache-dir torch==2.4.1+cpu --extra-index-url https://download.pytorch.org/whl/cpu
|
| 18 |
+
|
| 19 |
+
# Copy and install other requirements
|
| 20 |
COPY requirements.txt .
|
| 21 |
+
RUN pip install --no-cache-dir fastapi==0.115.0 uvicorn[standard]==0.30.6 \
|
| 22 |
+
transformers==4.45.0 pydantic==2.9.2 huggingface-hub==0.25.1 \
|
| 23 |
+
optimum==1.23.0 onnxruntime==1.19.0
|
| 24 |
|
| 25 |
# Copy application code
|
| 26 |
COPY . .
|
|
|
|
| 29 |
RUN useradd -m -u 1000 user
|
| 30 |
USER user
|
| 31 |
|
| 32 |
+
# Pre-download models during build for faster startup
|
| 33 |
+
RUN python -c "from transformers import pipeline; pipeline('text-classification', model='distilbert-base-uncased-finetuned-sst-2-english')" || true
|
| 34 |
+
RUN python -c "from transformers import pipeline; pipeline('text-generation', model='distilgpt2')" || true
|
| 35 |
+
|
| 36 |
# Expose port
|
| 37 |
EXPOSE 7860
|
| 38 |
|
| 39 |
+
# Run with optimized settings
|
| 40 |
+
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860", "--workers", "1"]
|
README.md
CHANGED
|
@@ -5,12 +5,16 @@ colorFrom: blue
|
|
| 5 |
colorTo: purple
|
| 6 |
sdk: docker
|
| 7 |
app_port: 7860
|
|
|
|
| 8 |
pinned: false
|
| 9 |
---
|
| 10 |
|
| 11 |
# Docker Model Runner
|
| 12 |
|
| 13 |
-
A
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
## Endpoints
|
| 16 |
|
|
@@ -19,27 +23,23 @@ A Docker-based Hugging Face Space with named API endpoints for model inference.
|
|
| 19 |
| `/` | GET | Welcome message |
|
| 20 |
| `/health` | GET | Health check |
|
| 21 |
| `/info` | GET | Model information |
|
| 22 |
-
| `/predict` | POST |
|
| 23 |
| `/generate` | POST | Text generation |
|
| 24 |
-
| `/embed` | POST |
|
| 25 |
|
| 26 |
## Usage
|
| 27 |
|
| 28 |
-
### Health Check
|
| 29 |
```bash
|
| 30 |
-
|
| 31 |
-
|
| 32 |
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
curl -X POST https://YOUR-SPACE.hf.space/predict \
|
| 36 |
-H "Content-Type: application/json" \
|
| 37 |
-
-d '{"text": "
|
| 38 |
-
```
|
| 39 |
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
curl -X POST https://YOUR-SPACE.hf.space/generate \
|
| 43 |
-H "Content-Type: application/json" \
|
| 44 |
-d '{"prompt": "Once upon a time", "max_length": 50}'
|
| 45 |
```
|
|
|
|
| 5 |
colorTo: purple
|
| 6 |
sdk: docker
|
| 7 |
app_port: 7860
|
| 8 |
+
suggested_hardware: cpu-basic
|
| 9 |
pinned: false
|
| 10 |
---
|
| 11 |
|
| 12 |
# Docker Model Runner
|
| 13 |
|
| 14 |
+
A CPU-optimized Docker Space with named API endpoints for model inference.
|
| 15 |
+
|
| 16 |
+
## Hardware
|
| 17 |
+
- **CPU Basic**: 2 vCPU · 16 GB RAM
|
| 18 |
|
| 19 |
## Endpoints
|
| 20 |
|
|
|
|
| 23 |
| `/` | GET | Welcome message |
|
| 24 |
| `/health` | GET | Health check |
|
| 25 |
| `/info` | GET | Model information |
|
| 26 |
+
| `/predict` | POST | Text classification |
|
| 27 |
| `/generate` | POST | Text generation |
|
| 28 |
+
| `/embed` | POST | Text embeddings |
|
| 29 |
|
| 30 |
## Usage
|
| 31 |
|
|
|
|
| 32 |
```bash
|
| 33 |
+
# Health Check
|
| 34 |
+
curl https://likhonsheikhdev-docker-model-runner.hf.space/health
|
| 35 |
|
| 36 |
+
# Prediction
|
| 37 |
+
curl -X POST https://likhonsheikhdev-docker-model-runner.hf.space/predict \
|
|
|
|
| 38 |
-H "Content-Type: application/json" \
|
| 39 |
+
-d '{"text": "I love this product!"}'
|
|
|
|
| 40 |
|
| 41 |
+
# Text Generation
|
| 42 |
+
curl -X POST https://likhonsheikhdev-docker-model-runner.hf.space/generate \
|
|
|
|
| 43 |
-H "Content-Type: application/json" \
|
| 44 |
-d '{"prompt": "Once upon a time", "max_length": 50}'
|
| 45 |
```
|
main.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
"""
|
| 2 |
-
Docker Model Runner - FastAPI application
|
|
|
|
| 3 |
"""
|
| 4 |
from fastapi import FastAPI, HTTPException
|
| 5 |
from pydantic import BaseModel
|
|
@@ -8,45 +9,61 @@ import torch
|
|
| 8 |
from transformers import pipeline, AutoTokenizer, AutoModel
|
| 9 |
import os
|
| 10 |
from datetime import datetime
|
|
|
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
|
|
|
|
|
|
| 17 |
|
| 18 |
-
#
|
| 19 |
-
|
| 20 |
-
GENERATOR_MODEL = os.getenv("GENERATOR_MODEL", "gpt2")
|
| 21 |
|
| 22 |
-
# Lazy-loaded pipelines
|
| 23 |
-
_classifier = None
|
| 24 |
-
_generator = None
|
| 25 |
-
_embedder = None
|
| 26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
-
|
| 36 |
-
global _generator
|
| 37 |
-
if _generator is None:
|
| 38 |
-
_generator = pipeline("text-generation", model=GENERATOR_MODEL)
|
| 39 |
-
return _generator
|
| 40 |
|
| 41 |
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
|
| 52 |
# Request/Response Models
|
|
@@ -65,7 +82,7 @@ class GenerateRequest(BaseModel):
|
|
| 65 |
prompt: str
|
| 66 |
max_length: Optional[int] = 50
|
| 67 |
num_return_sequences: Optional[int] = 1
|
| 68 |
-
temperature: Optional[float] =
|
| 69 |
|
| 70 |
|
| 71 |
class GenerateResponse(BaseModel):
|
|
@@ -88,12 +105,14 @@ class EmbedResponse(BaseModel):
|
|
| 88 |
class HealthResponse(BaseModel):
|
| 89 |
status: str
|
| 90 |
timestamp: str
|
| 91 |
-
|
|
|
|
| 92 |
|
| 93 |
|
| 94 |
class InfoResponse(BaseModel):
|
| 95 |
name: str
|
| 96 |
version: str
|
|
|
|
| 97 |
models: dict
|
| 98 |
endpoints: List[str]
|
| 99 |
|
|
@@ -103,7 +122,8 @@ class InfoResponse(BaseModel):
|
|
| 103 |
async def root():
|
| 104 |
"""Welcome endpoint"""
|
| 105 |
return {
|
| 106 |
-
"message": "Docker Model Runner API",
|
|
|
|
| 107 |
"docs": "/docs",
|
| 108 |
"endpoints": ["/health", "/info", "/predict", "/generate", "/embed"]
|
| 109 |
}
|
|
@@ -115,7 +135,8 @@ async def health():
|
|
| 115 |
return HealthResponse(
|
| 116 |
status="healthy",
|
| 117 |
timestamp=datetime.utcnow().isoformat(),
|
| 118 |
-
|
|
|
|
| 119 |
)
|
| 120 |
|
| 121 |
|
|
@@ -125,10 +146,11 @@ async def info():
|
|
| 125 |
return InfoResponse(
|
| 126 |
name="Docker Model Runner",
|
| 127 |
version="1.0.0",
|
|
|
|
| 128 |
models={
|
| 129 |
"classifier": MODEL_NAME,
|
| 130 |
"generator": GENERATOR_MODEL,
|
| 131 |
-
"embedder":
|
| 132 |
},
|
| 133 |
endpoints=["/", "/health", "/info", "/predict", "/generate", "/embed"]
|
| 134 |
)
|
|
@@ -137,15 +159,14 @@ async def info():
|
|
| 137 |
@app.post("/predict", response_model=PredictResponse)
|
| 138 |
async def predict(request: PredictRequest):
|
| 139 |
"""
|
| 140 |
-
Run text classification
|
| 141 |
|
| 142 |
- **text**: Input text to classify
|
| 143 |
- **top_k**: Number of top predictions to return
|
| 144 |
"""
|
| 145 |
try:
|
| 146 |
start_time = datetime.now()
|
| 147 |
-
|
| 148 |
-
results = classifier(request.text, top_k=request.top_k)
|
| 149 |
latency = (datetime.now() - start_time).total_seconds() * 1000
|
| 150 |
|
| 151 |
return PredictResponse(
|
|
@@ -163,19 +184,18 @@ async def generate(request: GenerateRequest):
|
|
| 163 |
Generate text from a prompt
|
| 164 |
|
| 165 |
- **prompt**: Input prompt for generation
|
| 166 |
-
- **max_length**: Maximum length of generated text
|
| 167 |
-
- **
|
| 168 |
-
- **temperature**: Sampling temperature
|
| 169 |
"""
|
| 170 |
try:
|
| 171 |
start_time = datetime.now()
|
| 172 |
-
|
| 173 |
-
results = generator(
|
| 174 |
request.prompt,
|
| 175 |
max_length=request.max_length,
|
| 176 |
num_return_sequences=request.num_return_sequences,
|
| 177 |
temperature=request.temperature,
|
| 178 |
-
do_sample=True
|
|
|
|
| 179 |
)
|
| 180 |
latency = (datetime.now() - start_time).total_seconds() * 1000
|
| 181 |
|
|
@@ -193,32 +213,36 @@ async def generate(request: GenerateRequest):
|
|
| 193 |
@app.post("/embed", response_model=EmbedResponse)
|
| 194 |
async def embed(request: EmbedRequest):
|
| 195 |
"""
|
| 196 |
-
Get text embeddings
|
| 197 |
|
| 198 |
- **texts**: List of texts to embed
|
| 199 |
"""
|
| 200 |
try:
|
| 201 |
start_time = datetime.now()
|
| 202 |
-
embedder = get_embedder()
|
| 203 |
|
| 204 |
-
# Tokenize
|
| 205 |
-
inputs =
|
| 206 |
request.texts,
|
| 207 |
padding=True,
|
| 208 |
truncation=True,
|
|
|
|
| 209 |
return_tensors="pt"
|
| 210 |
)
|
| 211 |
|
|
|
|
| 212 |
with torch.no_grad():
|
| 213 |
-
outputs =
|
| 214 |
-
#
|
| 215 |
-
|
|
|
|
|
|
|
|
|
|
| 216 |
|
| 217 |
latency = (datetime.now() - start_time).total_seconds() * 1000
|
| 218 |
|
| 219 |
return EmbedResponse(
|
| 220 |
embeddings=embeddings.tolist(),
|
| 221 |
-
model=
|
| 222 |
dimensions=embeddings.shape[1],
|
| 223 |
latency_ms=round(latency, 2)
|
| 224 |
)
|
|
|
|
| 1 |
"""
|
| 2 |
+
Docker Model Runner - CPU-Optimized FastAPI application
|
| 3 |
+
Optimized for: 2 vCPU, 16GB RAM
|
| 4 |
"""
|
| 5 |
from fastapi import FastAPI, HTTPException
|
| 6 |
from pydantic import BaseModel
|
|
|
|
| 9 |
from transformers import pipeline, AutoTokenizer, AutoModel
|
| 10 |
import os
|
| 11 |
from datetime import datetime
|
| 12 |
+
from contextlib import asynccontextmanager
|
| 13 |
|
| 14 |
+
# CPU-optimized lightweight models
|
| 15 |
+
MODEL_NAME = os.getenv("MODEL_NAME", "distilbert-base-uncased-finetuned-sst-2-english")
|
| 16 |
+
GENERATOR_MODEL = os.getenv("GENERATOR_MODEL", "distilgpt2")
|
| 17 |
+
EMBED_MODEL = os.getenv("EMBED_MODEL", "sentence-transformers/all-MiniLM-L6-v2")
|
| 18 |
+
|
| 19 |
+
# Set CPU threading
|
| 20 |
+
torch.set_num_threads(2)
|
| 21 |
|
| 22 |
+
# Global model cache
|
| 23 |
+
models = {}
|
|
|
|
| 24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
+
def load_models():
|
| 27 |
+
"""Pre-load models for faster inference"""
|
| 28 |
+
global models
|
| 29 |
+
print("Loading models for CPU inference...")
|
| 30 |
|
| 31 |
+
# Use smaller, faster models optimized for CPU
|
| 32 |
+
models["classifier"] = pipeline(
|
| 33 |
+
"text-classification",
|
| 34 |
+
model=MODEL_NAME,
|
| 35 |
+
device=-1, # CPU
|
| 36 |
+
torch_dtype=torch.float32
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
models["generator"] = pipeline(
|
| 40 |
+
"text-generation",
|
| 41 |
+
model=GENERATOR_MODEL,
|
| 42 |
+
device=-1,
|
| 43 |
+
torch_dtype=torch.float32
|
| 44 |
+
)
|
| 45 |
|
| 46 |
+
# Lightweight embedding model
|
| 47 |
+
models["tokenizer"] = AutoTokenizer.from_pretrained(EMBED_MODEL)
|
| 48 |
+
models["embedder"] = AutoModel.from_pretrained(EMBED_MODEL)
|
| 49 |
+
models["embedder"].eval()
|
| 50 |
|
| 51 |
+
print("✅ All models loaded successfully!")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
|
| 54 |
+
@asynccontextmanager
|
| 55 |
+
async def lifespan(app: FastAPI):
|
| 56 |
+
load_models()
|
| 57 |
+
yield
|
| 58 |
+
models.clear()
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
app = FastAPI(
|
| 62 |
+
title="Docker Model Runner",
|
| 63 |
+
description="CPU-Optimized HuggingFace Space with named endpoints",
|
| 64 |
+
version="1.0.0",
|
| 65 |
+
lifespan=lifespan
|
| 66 |
+
)
|
| 67 |
|
| 68 |
|
| 69 |
# Request/Response Models
|
|
|
|
| 82 |
prompt: str
|
| 83 |
max_length: Optional[int] = 50
|
| 84 |
num_return_sequences: Optional[int] = 1
|
| 85 |
+
temperature: Optional[float] = 0.7
|
| 86 |
|
| 87 |
|
| 88 |
class GenerateResponse(BaseModel):
|
|
|
|
| 105 |
class HealthResponse(BaseModel):
|
| 106 |
status: str
|
| 107 |
timestamp: str
|
| 108 |
+
hardware: str
|
| 109 |
+
models_loaded: bool
|
| 110 |
|
| 111 |
|
| 112 |
class InfoResponse(BaseModel):
|
| 113 |
name: str
|
| 114 |
version: str
|
| 115 |
+
hardware: str
|
| 116 |
models: dict
|
| 117 |
endpoints: List[str]
|
| 118 |
|
|
|
|
| 122 |
async def root():
|
| 123 |
"""Welcome endpoint"""
|
| 124 |
return {
|
| 125 |
+
"message": "Docker Model Runner API (CPU Optimized)",
|
| 126 |
+
"hardware": "CPU Basic: 2 vCPU · 16 GB RAM",
|
| 127 |
"docs": "/docs",
|
| 128 |
"endpoints": ["/health", "/info", "/predict", "/generate", "/embed"]
|
| 129 |
}
|
|
|
|
| 135 |
return HealthResponse(
|
| 136 |
status="healthy",
|
| 137 |
timestamp=datetime.utcnow().isoformat(),
|
| 138 |
+
hardware="CPU Basic: 2 vCPU · 16 GB RAM",
|
| 139 |
+
models_loaded=len(models) > 0
|
| 140 |
)
|
| 141 |
|
| 142 |
|
|
|
|
| 146 |
return InfoResponse(
|
| 147 |
name="Docker Model Runner",
|
| 148 |
version="1.0.0",
|
| 149 |
+
hardware="CPU Basic: 2 vCPU · 16 GB RAM",
|
| 150 |
models={
|
| 151 |
"classifier": MODEL_NAME,
|
| 152 |
"generator": GENERATOR_MODEL,
|
| 153 |
+
"embedder": EMBED_MODEL
|
| 154 |
},
|
| 155 |
endpoints=["/", "/health", "/info", "/predict", "/generate", "/embed"]
|
| 156 |
)
|
|
|
|
| 159 |
@app.post("/predict", response_model=PredictResponse)
|
| 160 |
async def predict(request: PredictRequest):
|
| 161 |
"""
|
| 162 |
+
Run text classification (sentiment analysis)
|
| 163 |
|
| 164 |
- **text**: Input text to classify
|
| 165 |
- **top_k**: Number of top predictions to return
|
| 166 |
"""
|
| 167 |
try:
|
| 168 |
start_time = datetime.now()
|
| 169 |
+
results = models["classifier"](request.text, top_k=request.top_k)
|
|
|
|
| 170 |
latency = (datetime.now() - start_time).total_seconds() * 1000
|
| 171 |
|
| 172 |
return PredictResponse(
|
|
|
|
| 184 |
Generate text from a prompt
|
| 185 |
|
| 186 |
- **prompt**: Input prompt for generation
|
| 187 |
+
- **max_length**: Maximum length of generated text (default: 50)
|
| 188 |
+
- **temperature**: Sampling temperature (default: 0.7)
|
|
|
|
| 189 |
"""
|
| 190 |
try:
|
| 191 |
start_time = datetime.now()
|
| 192 |
+
results = models["generator"](
|
|
|
|
| 193 |
request.prompt,
|
| 194 |
max_length=request.max_length,
|
| 195 |
num_return_sequences=request.num_return_sequences,
|
| 196 |
temperature=request.temperature,
|
| 197 |
+
do_sample=True,
|
| 198 |
+
pad_token_id=50256 # GPT2 pad token
|
| 199 |
)
|
| 200 |
latency = (datetime.now() - start_time).total_seconds() * 1000
|
| 201 |
|
|
|
|
| 213 |
@app.post("/embed", response_model=EmbedResponse)
|
| 214 |
async def embed(request: EmbedRequest):
|
| 215 |
"""
|
| 216 |
+
Get text embeddings using MiniLM (384 dimensions)
|
| 217 |
|
| 218 |
- **texts**: List of texts to embed
|
| 219 |
"""
|
| 220 |
try:
|
| 221 |
start_time = datetime.now()
|
|
|
|
| 222 |
|
| 223 |
+
# Tokenize
|
| 224 |
+
inputs = models["tokenizer"](
|
| 225 |
request.texts,
|
| 226 |
padding=True,
|
| 227 |
truncation=True,
|
| 228 |
+
max_length=256,
|
| 229 |
return_tensors="pt"
|
| 230 |
)
|
| 231 |
|
| 232 |
+
# Get embeddings
|
| 233 |
with torch.no_grad():
|
| 234 |
+
outputs = models["embedder"](**inputs)
|
| 235 |
+
# Mean pooling
|
| 236 |
+
attention_mask = inputs["attention_mask"]
|
| 237 |
+
token_embeddings = outputs.last_hidden_state
|
| 238 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
| 239 |
+
embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
| 240 |
|
| 241 |
latency = (datetime.now() - start_time).total_seconds() * 1000
|
| 242 |
|
| 243 |
return EmbedResponse(
|
| 244 |
embeddings=embeddings.tolist(),
|
| 245 |
+
model=EMBED_MODEL,
|
| 246 |
dimensions=embeddings.shape[1],
|
| 247 |
latency_ms=round(latency, 2)
|
| 248 |
)
|
requirements.txt
CHANGED
|
@@ -1,6 +1,8 @@
|
|
| 1 |
fastapi==0.115.0
|
| 2 |
uvicorn[standard]==0.30.6
|
| 3 |
transformers==4.45.0
|
| 4 |
-
torch==2.4.1
|
| 5 |
pydantic==2.9.2
|
| 6 |
huggingface-hub==0.25.1
|
|
|
|
|
|
|
|
|
| 1 |
fastapi==0.115.0
|
| 2 |
uvicorn[standard]==0.30.6
|
| 3 |
transformers==4.45.0
|
| 4 |
+
torch==2.4.1+cpu --extra-index-url https://download.pytorch.org/whl/cpu
|
| 5 |
pydantic==2.9.2
|
| 6 |
huggingface-hub==0.25.1
|
| 7 |
+
optimum==1.23.0
|
| 8 |
+
onnxruntime==1.19.0
|