File size: 5,049 Bytes
d69e848 09b5534 d69e848 09b5534 ab0cf4f d69e848 09b5534 7270816 ab0cf4f 09b5534 f238f35 51159ea f238f35 7270816 f238f35 51159ea 7270816 f238f35 7270816 f238f35 7270816 f238f35 7270816 f238f35 7270816 09b5534 7270816 09b5534 7270816 09b5534 51159ea f238f35 09b5534 f238f35 51159ea 09b5534 f238f35 7270816 51159ea f238f35 7270816 51159ea 7270816 f238f35 51159ea f238f35 51159ea f238f35 51159ea 7270816 f238f35 7270816 f238f35 7270816 51159ea f238f35 7270816 f238f35 7270816 f238f35 7270816 f238f35 09b5534 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
---
title: Docker Model Runner
emoji: π³
colorFrom: blue
colorTo: purple
sdk: docker
app_port: 7860
suggested_hardware: cpu-basic
pinned: false
---
# Docker Model Runner
**Anthropic API Compatible** with **Interleaved Thinking** support.
## Hardware
- **CPU Basic**: 2 vCPU Β· 16 GB RAM
## Quick Start
```bash
pip install anthropic
export ANTHROPIC_BASE_URL=https://likhonsheikhdev-docker-model-runner.hf.space
export ANTHROPIC_API_KEY=any-key
```
```python
import anthropic
client = anthropic.Anthropic()
message = client.messages.create(
model="MiniMax-M2",
max_tokens=1000,
system="You are a helpful assistant.",
messages=[{"role": "user", "content": "Hi, how are you?"}]
)
for block in message.content:
if block.type == "thinking":
print(f"Thinking:\n{block.thinking}\n")
elif block.type == "text":
print(f"Text:\n{block.text}\n")
```
## Interleaved Thinking
Enable thinking to get reasoning steps interleaved with responses:
```python
import anthropic
client = anthropic.Anthropic(
base_url="https://likhonsheikhdev-docker-model-runner.hf.space"
)
message = client.messages.create(
model="MiniMax-M2",
max_tokens=1024,
thinking={
"type": "enabled",
"budget_tokens": 200
},
messages=[{"role": "user", "content": "Explain quantum computing"}]
)
# Response contains interleaved thinking and text blocks
for block in message.content:
if block.type == "thinking":
print(f"π Thinking: {block.thinking}")
elif block.type == "text":
print(f"π Response: {block.text}")
```
## Streaming with Thinking
```python
import anthropic
client = anthropic.Anthropic(
base_url="https://likhonsheikhdev-docker-model-runner.hf.space"
)
with client.messages.stream(
model="MiniMax-M2",
max_tokens=1024,
thinking={"type": "enabled", "budget_tokens": 100},
messages=[{"role": "user", "content": "Hello!"}]
) as stream:
for event in stream:
if hasattr(event, 'type'):
if event.type == 'content_block_start':
print(f"\n[{event.content_block.type}]", end=" ")
elif event.type == 'content_block_delta':
if hasattr(event.delta, 'thinking'):
print(event.delta.thinking, end="")
elif hasattr(event.delta, 'text'):
print(event.delta.text, end="")
```
## Multi-Turn with Thinking History
**Important**: In multi-turn conversations, append the complete model response (including thinking blocks) to maintain reasoning chain continuity.
```python
import anthropic
client = anthropic.Anthropic(
base_url="https://likhonsheikhdev-docker-model-runner.hf.space"
)
messages = [{"role": "user", "content": "What is 2+2?"}]
# First turn
response = client.messages.create(
model="MiniMax-M2",
max_tokens=1024,
thinking={"type": "enabled", "budget_tokens": 100},
messages=messages
)
# Append full response (including thinking) to history
messages.append({
"role": "assistant",
"content": response.content # Includes both thinking and text blocks
})
# Second turn
messages.append({"role": "user", "content": "Now multiply that by 3"})
response2 = client.messages.create(
model="MiniMax-M2",
max_tokens=1024,
thinking={"type": "enabled", "budget_tokens": 100},
messages=messages
)
```
## Supported Models
| Model | Description |
|-------|-------------|
| MiniMax-M2 | Agentic capabilities, Advanced reasoning |
| MiniMax-M2-Stable | High concurrency and commercial use |
## API Compatibility
### Parameters
| Parameter | Status |
|-----------|--------|
| model | β
Fully supported |
| messages | β
Partial (text, tool calls) |
| max_tokens | β
Fully supported |
| stream | β
Fully supported |
| system | β
Fully supported |
| temperature | β
Range (0.0, 1.0] |
| thinking | β
Fully supported |
| thinking.budget_tokens | β
Fully supported |
| tools | β
Fully supported |
| tool_choice | β
Fully supported |
| top_p | β
Fully supported |
| metadata | β
Fully supported |
| top_k | βͺ Ignored |
| stop_sequences | βͺ Ignored |
### Message Types
| Type | Status |
|------|--------|
| text | β
Supported |
| thinking | β
Supported |
| tool_use | β
Supported |
| tool_result | β
Supported |
| image | β Not supported |
| document | β Not supported |
## Endpoints
| Endpoint | Method | Description |
|----------|--------|-------------|
| `/v1/messages` | POST | Anthropic Messages API |
| `/v1/chat/completions` | POST | OpenAI Chat API |
| `/v1/models` | GET | List models |
| `/health` | GET | Health check |
| `/info` | GET | API info |
## cURL Example
```bash
curl -X POST https://likhonsheikhdev-docker-model-runner.hf.space/v1/messages \
-H "Content-Type: application/json" \
-H "x-api-key: any-key" \
-d '{
"model": "MiniMax-M2",
"max_tokens": 1024,
"thinking": {"type": "enabled", "budget_tokens": 100},
"messages": [
{"role": "user", "content": "Explain AI briefly"}
]
}'
```
|