Upload folder using huggingface_hub
Browse files
README.md
CHANGED
|
@@ -11,25 +11,19 @@ pinned: false
|
|
| 11 |
|
| 12 |
# Docker Model Runner
|
| 13 |
|
| 14 |
-
**Anthropic API Compatible**
|
| 15 |
|
| 16 |
## Hardware
|
| 17 |
- **CPU Basic**: 2 vCPU · 16 GB RAM
|
| 18 |
|
| 19 |
## Quick Start
|
| 20 |
|
| 21 |
-
### 1. Install Anthropic SDK
|
| 22 |
```bash
|
| 23 |
pip install anthropic
|
| 24 |
-
```
|
| 25 |
-
|
| 26 |
-
### 2. Configure Environment
|
| 27 |
-
```bash
|
| 28 |
export ANTHROPIC_BASE_URL=https://likhonsheikhdev-docker-model-runner.hf.space
|
| 29 |
export ANTHROPIC_API_KEY=any-key
|
| 30 |
```
|
| 31 |
|
| 32 |
-
### 3. Call API
|
| 33 |
```python
|
| 34 |
import anthropic
|
| 35 |
|
|
@@ -39,17 +33,7 @@ message = client.messages.create(
|
|
| 39 |
model="MiniMax-M2",
|
| 40 |
max_tokens=1000,
|
| 41 |
system="You are a helpful assistant.",
|
| 42 |
-
messages=[
|
| 43 |
-
{
|
| 44 |
-
"role": "user",
|
| 45 |
-
"content": [
|
| 46 |
-
{
|
| 47 |
-
"type": "text",
|
| 48 |
-
"text": "Hi, how are you?"
|
| 49 |
-
}
|
| 50 |
-
]
|
| 51 |
-
}
|
| 52 |
-
]
|
| 53 |
)
|
| 54 |
|
| 55 |
for block in message.content:
|
|
@@ -59,55 +43,36 @@ for block in message.content:
|
|
| 59 |
print(f"Text:\n{block.text}\n")
|
| 60 |
```
|
| 61 |
|
| 62 |
-
##
|
| 63 |
|
| 64 |
-
|
| 65 |
-
|------------|-------------|
|
| 66 |
-
| MiniMax-M2 | Agentic capabilities, Advanced reasoning |
|
| 67 |
-
| MiniMax-M2-Stable | High concurrency and commercial use |
|
| 68 |
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
### Supported Parameters
|
| 72 |
-
|
| 73 |
-
| Parameter | Status | Description |
|
| 74 |
-
|-----------|--------|-------------|
|
| 75 |
-
| model | ✅ Fully supported | MiniMax-M2, MiniMax-M2-Stable |
|
| 76 |
-
| messages | ✅ Partial support | Text and tool calls |
|
| 77 |
-
| max_tokens | ✅ Fully supported | Max tokens to generate |
|
| 78 |
-
| stream | ✅ Fully supported | Streaming response |
|
| 79 |
-
| system | ✅ Fully supported | System prompt |
|
| 80 |
-
| temperature | ✅ Fully supported | Range (0.0, 1.0] |
|
| 81 |
-
| tool_choice | ✅ Fully supported | Tool selection strategy |
|
| 82 |
-
| tools | ✅ Fully supported | Tool definitions |
|
| 83 |
-
| top_p | ✅ Fully supported | Nucleus sampling |
|
| 84 |
-
| metadata | ✅ Fully supported | Metadata |
|
| 85 |
-
| thinking | ✅ Fully supported | Reasoning content |
|
| 86 |
-
| top_k | ⚪ Ignored | Parameter ignored |
|
| 87 |
-
| stop_sequences | ⚪ Ignored | Parameter ignored |
|
| 88 |
-
|
| 89 |
-
### Message Types
|
| 90 |
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
| tool_use | ✅ Fully supported |
|
| 95 |
-
| tool_result | ✅ Fully supported |
|
| 96 |
-
| thinking | ✅ Fully supported |
|
| 97 |
-
| image | ❌ Not supported |
|
| 98 |
-
| document | ❌ Not supported |
|
| 99 |
|
| 100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
|
| 110 |
-
## Streaming
|
| 111 |
|
| 112 |
```python
|
| 113 |
import anthropic
|
|
@@ -119,13 +84,23 @@ client = anthropic.Anthropic(
|
|
| 119 |
with client.messages.stream(
|
| 120 |
model="MiniMax-M2",
|
| 121 |
max_tokens=1024,
|
|
|
|
| 122 |
messages=[{"role": "user", "content": "Hello!"}]
|
| 123 |
) as stream:
|
| 124 |
-
for
|
| 125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
```
|
| 127 |
|
| 128 |
-
##
|
|
|
|
|
|
|
| 129 |
|
| 130 |
```python
|
| 131 |
import anthropic
|
|
@@ -134,28 +109,82 @@ client = anthropic.Anthropic(
|
|
| 134 |
base_url="https://likhonsheikhdev-docker-model-runner.hf.space"
|
| 135 |
)
|
| 136 |
|
| 137 |
-
|
| 138 |
-
{
|
| 139 |
-
"name": "get_weather",
|
| 140 |
-
"description": "Get the current weather in a location",
|
| 141 |
-
"input_schema": {
|
| 142 |
-
"type": "object",
|
| 143 |
-
"properties": {
|
| 144 |
-
"location": {"type": "string", "description": "City name"}
|
| 145 |
-
},
|
| 146 |
-
"required": ["location"]
|
| 147 |
-
}
|
| 148 |
-
}
|
| 149 |
-
]
|
| 150 |
|
| 151 |
-
|
|
|
|
| 152 |
model="MiniMax-M2",
|
| 153 |
max_tokens=1024,
|
| 154 |
-
|
| 155 |
-
messages=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
)
|
| 157 |
```
|
| 158 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
## cURL Example
|
| 160 |
|
| 161 |
```bash
|
|
@@ -165,8 +194,9 @@ curl -X POST https://likhonsheikhdev-docker-model-runner.hf.space/v1/messages \
|
|
| 165 |
-d '{
|
| 166 |
"model": "MiniMax-M2",
|
| 167 |
"max_tokens": 1024,
|
|
|
|
| 168 |
"messages": [
|
| 169 |
-
{"role": "user", "content": "
|
| 170 |
]
|
| 171 |
}'
|
| 172 |
```
|
|
|
|
| 11 |
|
| 12 |
# Docker Model Runner
|
| 13 |
|
| 14 |
+
**Anthropic API Compatible** with **Interleaved Thinking** support.
|
| 15 |
|
| 16 |
## Hardware
|
| 17 |
- **CPU Basic**: 2 vCPU · 16 GB RAM
|
| 18 |
|
| 19 |
## Quick Start
|
| 20 |
|
|
|
|
| 21 |
```bash
|
| 22 |
pip install anthropic
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
export ANTHROPIC_BASE_URL=https://likhonsheikhdev-docker-model-runner.hf.space
|
| 24 |
export ANTHROPIC_API_KEY=any-key
|
| 25 |
```
|
| 26 |
|
|
|
|
| 27 |
```python
|
| 28 |
import anthropic
|
| 29 |
|
|
|
|
| 33 |
model="MiniMax-M2",
|
| 34 |
max_tokens=1000,
|
| 35 |
system="You are a helpful assistant.",
|
| 36 |
+
messages=[{"role": "user", "content": "Hi, how are you?"}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
)
|
| 38 |
|
| 39 |
for block in message.content:
|
|
|
|
| 43 |
print(f"Text:\n{block.text}\n")
|
| 44 |
```
|
| 45 |
|
| 46 |
+
## Interleaved Thinking
|
| 47 |
|
| 48 |
+
Enable thinking to get reasoning steps interleaved with responses:
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
+
```python
|
| 51 |
+
import anthropic
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
+
client = anthropic.Anthropic(
|
| 54 |
+
base_url="https://likhonsheikhdev-docker-model-runner.hf.space"
|
| 55 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
+
message = client.messages.create(
|
| 58 |
+
model="MiniMax-M2",
|
| 59 |
+
max_tokens=1024,
|
| 60 |
+
thinking={
|
| 61 |
+
"type": "enabled",
|
| 62 |
+
"budget_tokens": 200
|
| 63 |
+
},
|
| 64 |
+
messages=[{"role": "user", "content": "Explain quantum computing"}]
|
| 65 |
+
)
|
| 66 |
|
| 67 |
+
# Response contains interleaved thinking and text blocks
|
| 68 |
+
for block in message.content:
|
| 69 |
+
if block.type == "thinking":
|
| 70 |
+
print(f"💭 Thinking: {block.thinking}")
|
| 71 |
+
elif block.type == "text":
|
| 72 |
+
print(f"📝 Response: {block.text}")
|
| 73 |
+
```
|
| 74 |
|
| 75 |
+
## Streaming with Thinking
|
| 76 |
|
| 77 |
```python
|
| 78 |
import anthropic
|
|
|
|
| 84 |
with client.messages.stream(
|
| 85 |
model="MiniMax-M2",
|
| 86 |
max_tokens=1024,
|
| 87 |
+
thinking={"type": "enabled", "budget_tokens": 100},
|
| 88 |
messages=[{"role": "user", "content": "Hello!"}]
|
| 89 |
) as stream:
|
| 90 |
+
for event in stream:
|
| 91 |
+
if hasattr(event, 'type'):
|
| 92 |
+
if event.type == 'content_block_start':
|
| 93 |
+
print(f"\n[{event.content_block.type}]", end=" ")
|
| 94 |
+
elif event.type == 'content_block_delta':
|
| 95 |
+
if hasattr(event.delta, 'thinking'):
|
| 96 |
+
print(event.delta.thinking, end="")
|
| 97 |
+
elif hasattr(event.delta, 'text'):
|
| 98 |
+
print(event.delta.text, end="")
|
| 99 |
```
|
| 100 |
|
| 101 |
+
## Multi-Turn with Thinking History
|
| 102 |
+
|
| 103 |
+
**Important**: In multi-turn conversations, append the complete model response (including thinking blocks) to maintain reasoning chain continuity.
|
| 104 |
|
| 105 |
```python
|
| 106 |
import anthropic
|
|
|
|
| 109 |
base_url="https://likhonsheikhdev-docker-model-runner.hf.space"
|
| 110 |
)
|
| 111 |
|
| 112 |
+
messages = [{"role": "user", "content": "What is 2+2?"}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
|
| 114 |
+
# First turn
|
| 115 |
+
response = client.messages.create(
|
| 116 |
model="MiniMax-M2",
|
| 117 |
max_tokens=1024,
|
| 118 |
+
thinking={"type": "enabled", "budget_tokens": 100},
|
| 119 |
+
messages=messages
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
# Append full response (including thinking) to history
|
| 123 |
+
messages.append({
|
| 124 |
+
"role": "assistant",
|
| 125 |
+
"content": response.content # Includes both thinking and text blocks
|
| 126 |
+
})
|
| 127 |
+
|
| 128 |
+
# Second turn
|
| 129 |
+
messages.append({"role": "user", "content": "Now multiply that by 3"})
|
| 130 |
+
|
| 131 |
+
response2 = client.messages.create(
|
| 132 |
+
model="MiniMax-M2",
|
| 133 |
+
max_tokens=1024,
|
| 134 |
+
thinking={"type": "enabled", "budget_tokens": 100},
|
| 135 |
+
messages=messages
|
| 136 |
)
|
| 137 |
```
|
| 138 |
|
| 139 |
+
## Supported Models
|
| 140 |
+
|
| 141 |
+
| Model | Description |
|
| 142 |
+
|-------|-------------|
|
| 143 |
+
| MiniMax-M2 | Agentic capabilities, Advanced reasoning |
|
| 144 |
+
| MiniMax-M2-Stable | High concurrency and commercial use |
|
| 145 |
+
|
| 146 |
+
## API Compatibility
|
| 147 |
+
|
| 148 |
+
### Parameters
|
| 149 |
+
|
| 150 |
+
| Parameter | Status |
|
| 151 |
+
|-----------|--------|
|
| 152 |
+
| model | ✅ Fully supported |
|
| 153 |
+
| messages | ✅ Partial (text, tool calls) |
|
| 154 |
+
| max_tokens | ✅ Fully supported |
|
| 155 |
+
| stream | ✅ Fully supported |
|
| 156 |
+
| system | ✅ Fully supported |
|
| 157 |
+
| temperature | ✅ Range (0.0, 1.0] |
|
| 158 |
+
| thinking | ✅ Fully supported |
|
| 159 |
+
| thinking.budget_tokens | ✅ Fully supported |
|
| 160 |
+
| tools | ✅ Fully supported |
|
| 161 |
+
| tool_choice | ✅ Fully supported |
|
| 162 |
+
| top_p | ✅ Fully supported |
|
| 163 |
+
| metadata | ✅ Fully supported |
|
| 164 |
+
| top_k | ⚪ Ignored |
|
| 165 |
+
| stop_sequences | ⚪ Ignored |
|
| 166 |
+
|
| 167 |
+
### Message Types
|
| 168 |
+
|
| 169 |
+
| Type | Status |
|
| 170 |
+
|------|--------|
|
| 171 |
+
| text | ✅ Supported |
|
| 172 |
+
| thinking | ✅ Supported |
|
| 173 |
+
| tool_use | ✅ Supported |
|
| 174 |
+
| tool_result | ✅ Supported |
|
| 175 |
+
| image | ❌ Not supported |
|
| 176 |
+
| document | ❌ Not supported |
|
| 177 |
+
|
| 178 |
+
## Endpoints
|
| 179 |
+
|
| 180 |
+
| Endpoint | Method | Description |
|
| 181 |
+
|----------|--------|-------------|
|
| 182 |
+
| `/v1/messages` | POST | Anthropic Messages API |
|
| 183 |
+
| `/v1/chat/completions` | POST | OpenAI Chat API |
|
| 184 |
+
| `/v1/models` | GET | List models |
|
| 185 |
+
| `/health` | GET | Health check |
|
| 186 |
+
| `/info` | GET | API info |
|
| 187 |
+
|
| 188 |
## cURL Example
|
| 189 |
|
| 190 |
```bash
|
|
|
|
| 194 |
-d '{
|
| 195 |
"model": "MiniMax-M2",
|
| 196 |
"max_tokens": 1024,
|
| 197 |
+
"thinking": {"type": "enabled", "budget_tokens": 100},
|
| 198 |
"messages": [
|
| 199 |
+
{"role": "user", "content": "Explain AI briefly"}
|
| 200 |
]
|
| 201 |
}'
|
| 202 |
```
|
main.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
"""
|
| 2 |
Docker Model Runner - Anthropic API Compatible
|
| 3 |
-
Full compatibility with Anthropic Messages API
|
| 4 |
Optimized for: 2 vCPU, 16GB RAM
|
| 5 |
"""
|
| 6 |
from fastapi import FastAPI, HTTPException, Header, Request
|
|
@@ -16,6 +16,7 @@ import uuid
|
|
| 16 |
import time
|
| 17 |
import json
|
| 18 |
import asyncio
|
|
|
|
| 19 |
|
| 20 |
# CPU-optimized lightweight models
|
| 21 |
GENERATOR_MODEL = os.getenv("GENERATOR_MODEL", "distilgpt2")
|
|
@@ -52,7 +53,7 @@ async def lifespan(app: FastAPI):
|
|
| 52 |
|
| 53 |
app = FastAPI(
|
| 54 |
title="Docker Model Runner",
|
| 55 |
-
description="Anthropic API Compatible
|
| 56 |
version="1.0.0",
|
| 57 |
lifespan=lifespan
|
| 58 |
)
|
|
@@ -70,6 +71,11 @@ class ThinkingBlock(BaseModel):
|
|
| 70 |
thinking: str
|
| 71 |
|
| 72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
class ToolUseBlock(BaseModel):
|
| 74 |
type: Literal["tool_use"] = "tool_use"
|
| 75 |
id: str
|
|
@@ -96,7 +102,7 @@ class ImageBlock(BaseModel):
|
|
| 96 |
source: ImageSource
|
| 97 |
|
| 98 |
|
| 99 |
-
ContentBlock = Union[TextBlock, ThinkingBlock, ToolUseBlock, ToolResultContent, ImageBlock, str]
|
| 100 |
|
| 101 |
|
| 102 |
class MessageParam(BaseModel):
|
|
@@ -119,6 +125,7 @@ class Tool(BaseModel):
|
|
| 119 |
class ToolChoice(BaseModel):
|
| 120 |
type: Literal["auto", "any", "tool"] = "auto"
|
| 121 |
name: Optional[str] = None
|
|
|
|
| 122 |
|
| 123 |
|
| 124 |
class ThinkingConfig(BaseModel):
|
|
@@ -141,7 +148,7 @@ class AnthropicRequest(BaseModel):
|
|
| 141 |
stream: Optional[bool] = False
|
| 142 |
system: Optional[Union[str, List[TextBlock]]] = None
|
| 143 |
tools: Optional[List[Tool]] = None
|
| 144 |
-
tool_choice: Optional[ToolChoice] = None
|
| 145 |
metadata: Optional[Metadata] = None
|
| 146 |
thinking: Optional[ThinkingConfig] = None
|
| 147 |
service_tier: Optional[str] = None # Ignored
|
|
@@ -158,23 +165,13 @@ class AnthropicResponse(BaseModel):
|
|
| 158 |
id: str
|
| 159 |
type: Literal["message"] = "message"
|
| 160 |
role: Literal["assistant"] = "assistant"
|
| 161 |
-
content: List[Union[TextBlock, ThinkingBlock, ToolUseBlock]]
|
| 162 |
model: str
|
| 163 |
stop_reason: Optional[Literal["end_turn", "max_tokens", "stop_sequence", "tool_use"]] = "end_turn"
|
| 164 |
stop_sequence: Optional[str] = None
|
| 165 |
usage: Usage
|
| 166 |
|
| 167 |
|
| 168 |
-
# Streaming Event Models
|
| 169 |
-
class StreamEvent(BaseModel):
|
| 170 |
-
type: str
|
| 171 |
-
index: Optional[int] = None
|
| 172 |
-
content_block: Optional[Dict[str, Any]] = None
|
| 173 |
-
delta: Optional[Dict[str, Any]] = None
|
| 174 |
-
message: Optional[Dict[str, Any]] = None
|
| 175 |
-
usage: Optional[Dict[str, Any]] = None
|
| 176 |
-
|
| 177 |
-
|
| 178 |
# ============== Helper Functions ==============
|
| 179 |
|
| 180 |
def extract_text_from_content(content: Union[str, List[ContentBlock]]) -> str:
|
|
@@ -207,7 +204,7 @@ def format_system_prompt(system: Optional[Union[str, List[TextBlock]]]) -> str:
|
|
| 207 |
return " ".join([block.text for block in system if hasattr(block, 'text')])
|
| 208 |
|
| 209 |
|
| 210 |
-
def format_messages_to_prompt(messages: List[MessageParam], system: Optional[Union[str, List[TextBlock]]] = None) -> str:
|
| 211 |
"""Convert chat messages to a single prompt string"""
|
| 212 |
prompt_parts = []
|
| 213 |
|
|
@@ -217,12 +214,34 @@ def format_messages_to_prompt(messages: List[MessageParam], system: Optional[Uni
|
|
| 217 |
|
| 218 |
for msg in messages:
|
| 219 |
role = msg.role
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 226 |
|
| 227 |
prompt_parts.append("Assistant:")
|
| 228 |
return "".join(prompt_parts)
|
|
@@ -239,7 +258,7 @@ def generate_text(prompt: str, max_tokens: int, temperature: float, top_p: float
|
|
| 239 |
with torch.no_grad():
|
| 240 |
outputs = model.generate(
|
| 241 |
**inputs,
|
| 242 |
-
max_new_tokens=min(max_tokens, 256),
|
| 243 |
temperature=temperature if temperature > 0 else 1.0,
|
| 244 |
top_p=top_p,
|
| 245 |
do_sample=temperature > 0,
|
|
@@ -254,13 +273,51 @@ def generate_text(prompt: str, max_tokens: int, temperature: float, top_p: float
|
|
| 254 |
return generated_text.strip(), input_tokens, output_tokens
|
| 255 |
|
| 256 |
|
| 257 |
-
|
| 258 |
-
"""Generate
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 259 |
tokenizer = models["tokenizer"]
|
| 260 |
model = models["model"]
|
| 261 |
|
| 262 |
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
|
| 263 |
input_tokens = inputs["input_ids"].shape[1]
|
|
|
|
| 264 |
|
| 265 |
# Send message_start event
|
| 266 |
message_start = {
|
|
@@ -278,15 +335,49 @@ async def generate_stream(prompt: str, max_tokens: int, temperature: float, top_
|
|
| 278 |
}
|
| 279 |
yield f"event: message_start\ndata: {json.dumps(message_start)}\n\n"
|
| 280 |
|
| 281 |
-
|
| 282 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 283 |
"type": "content_block_start",
|
| 284 |
-
"index":
|
| 285 |
"content_block": {"type": "text", "text": ""}
|
| 286 |
}
|
| 287 |
-
yield f"event: content_block_start\ndata: {json.dumps(
|
| 288 |
|
| 289 |
-
# Generate
|
| 290 |
with torch.no_grad():
|
| 291 |
outputs = model.generate(
|
| 292 |
**inputs,
|
|
@@ -300,29 +391,29 @@ async def generate_stream(prompt: str, max_tokens: int, temperature: float, top_
|
|
| 300 |
|
| 301 |
generated_tokens = outputs[0][input_tokens:]
|
| 302 |
generated_text = tokenizer.decode(generated_tokens, skip_special_tokens=True).strip()
|
| 303 |
-
|
| 304 |
|
| 305 |
# Stream text in chunks
|
| 306 |
chunk_size = 5
|
| 307 |
for i in range(0, len(generated_text), chunk_size):
|
| 308 |
chunk = generated_text[i:i+chunk_size]
|
| 309 |
-
|
| 310 |
"type": "content_block_delta",
|
| 311 |
-
"index":
|
| 312 |
"delta": {"type": "text_delta", "text": chunk}
|
| 313 |
}
|
| 314 |
-
yield f"event: content_block_delta\ndata: {json.dumps(
|
| 315 |
-
await asyncio.sleep(0.01)
|
| 316 |
|
| 317 |
-
# Send content_block_stop
|
| 318 |
-
|
| 319 |
-
yield f"event: content_block_stop\ndata: {json.dumps(
|
| 320 |
|
| 321 |
# Send message_delta event
|
| 322 |
message_delta = {
|
| 323 |
"type": "message_delta",
|
| 324 |
"delta": {"stop_reason": "end_turn", "stop_sequence": None},
|
| 325 |
-
"usage": {"output_tokens":
|
| 326 |
}
|
| 327 |
yield f"event: message_delta\ndata: {json.dumps(message_delta)}\n\n"
|
| 328 |
|
|
@@ -336,7 +427,6 @@ def handle_tool_call(tools: List[Tool], messages: List[MessageParam], generated_
|
|
| 336 |
if not tools:
|
| 337 |
return None
|
| 338 |
|
| 339 |
-
# Simple heuristic: check if response mentions tool names
|
| 340 |
for tool in tools:
|
| 341 |
if tool.name.lower() in generated_text.lower():
|
| 342 |
return ToolUseBlock(
|
|
@@ -353,7 +443,7 @@ def handle_tool_call(tools: List[Tool], messages: List[MessageParam], generated_
|
|
| 353 |
@app.post("/v1/messages")
|
| 354 |
async def create_message(request: AnthropicRequest):
|
| 355 |
"""
|
| 356 |
-
Anthropic Messages API compatible endpoint
|
| 357 |
|
| 358 |
POST /v1/messages
|
| 359 |
|
|
@@ -362,24 +452,39 @@ async def create_message(request: AnthropicRequest):
|
|
| 362 |
- System prompts
|
| 363 |
- Streaming responses
|
| 364 |
- Tool/function calling
|
| 365 |
-
-
|
|
|
|
|
|
|
| 366 |
"""
|
| 367 |
try:
|
| 368 |
message_id = f"msg_{uuid.uuid4().hex[:24]}"
|
| 369 |
|
| 370 |
-
#
|
| 371 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 372 |
|
| 373 |
# Handle streaming
|
| 374 |
if request.stream:
|
| 375 |
return StreamingResponse(
|
| 376 |
-
|
| 377 |
prompt=prompt,
|
| 378 |
max_tokens=request.max_tokens,
|
| 379 |
temperature=request.temperature or 1.0,
|
| 380 |
top_p=request.top_p or 1.0,
|
| 381 |
message_id=message_id,
|
| 382 |
-
model_name=request.model
|
|
|
|
|
|
|
| 383 |
),
|
| 384 |
media_type="text/event-stream",
|
| 385 |
headers={
|
|
@@ -390,20 +495,23 @@ async def create_message(request: AnthropicRequest):
|
|
| 390 |
)
|
| 391 |
|
| 392 |
# Non-streaming response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 393 |
generated_text, input_tokens, output_tokens = generate_text(
|
| 394 |
prompt=prompt,
|
| 395 |
max_tokens=request.max_tokens,
|
| 396 |
temperature=request.temperature or 1.0,
|
| 397 |
top_p=request.top_p or 1.0
|
| 398 |
)
|
| 399 |
-
|
| 400 |
-
# Build content blocks
|
| 401 |
-
content_blocks = []
|
| 402 |
-
|
| 403 |
-
# Add thinking block if enabled
|
| 404 |
-
if request.thinking and request.thinking.type == "enabled":
|
| 405 |
-
thinking_text = f"Analyzing the user's request and formulating a response..."
|
| 406 |
-
content_blocks.append(ThinkingBlock(type="thinking", thinking=thinking_text))
|
| 407 |
|
| 408 |
# Check for tool calls
|
| 409 |
tool_use = handle_tool_call(request.tools, request.messages, generated_text) if request.tools else None
|
|
@@ -421,7 +529,7 @@ async def create_message(request: AnthropicRequest):
|
|
| 421 |
content=content_blocks,
|
| 422 |
model=request.model,
|
| 423 |
stop_reason=stop_reason,
|
| 424 |
-
usage=Usage(input_tokens=input_tokens, output_tokens=
|
| 425 |
)
|
| 426 |
except Exception as e:
|
| 427 |
raise HTTPException(status_code=500, detail=str(e))
|
|
@@ -447,7 +555,6 @@ class ChatCompletionRequest(BaseModel):
|
|
| 447 |
async def chat_completions(request: ChatCompletionRequest):
|
| 448 |
"""OpenAI Chat Completions API compatible endpoint"""
|
| 449 |
try:
|
| 450 |
-
# Convert to Anthropic format
|
| 451 |
anthropic_messages = [
|
| 452 |
MessageParam(role=msg.role if msg.role in ["user", "assistant"] else "user",
|
| 453 |
content=msg.content)
|
|
@@ -502,7 +609,7 @@ async def list_models():
|
|
| 502 |
async def root():
|
| 503 |
"""Welcome endpoint"""
|
| 504 |
return {
|
| 505 |
-
"message": "Docker Model Runner API (Anthropic Compatible)",
|
| 506 |
"hardware": "CPU Basic: 2 vCPU · 16 GB RAM",
|
| 507 |
"docs": "/docs",
|
| 508 |
"api_endpoints": {
|
|
@@ -515,7 +622,8 @@ async def root():
|
|
| 515 |
"system prompts",
|
| 516 |
"streaming responses",
|
| 517 |
"tool/function calling",
|
| 518 |
-
"thinking blocks",
|
|
|
|
| 519 |
"metadata"
|
| 520 |
]
|
| 521 |
}
|
|
@@ -537,9 +645,14 @@ async def info():
|
|
| 537 |
"""API information"""
|
| 538 |
return {
|
| 539 |
"name": "Docker Model Runner",
|
| 540 |
-
"version": "1.
|
| 541 |
"api_compatibility": ["anthropic", "openai"],
|
| 542 |
"supported_models": ["MiniMax-M2", "MiniMax-M2-Stable"],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 543 |
"supported_parameters": {
|
| 544 |
"fully_supported": ["model", "messages", "max_tokens", "stream", "system", "temperature", "top_p", "tools", "tool_choice", "metadata", "thinking"],
|
| 545 |
"ignored": ["top_k", "stop_sequences", "service_tier"]
|
|
|
|
| 1 |
"""
|
| 2 |
Docker Model Runner - Anthropic API Compatible
|
| 3 |
+
Full compatibility with Anthropic Messages API + Interleaved Thinking
|
| 4 |
Optimized for: 2 vCPU, 16GB RAM
|
| 5 |
"""
|
| 6 |
from fastapi import FastAPI, HTTPException, Header, Request
|
|
|
|
| 16 |
import time
|
| 17 |
import json
|
| 18 |
import asyncio
|
| 19 |
+
import re
|
| 20 |
|
| 21 |
# CPU-optimized lightweight models
|
| 22 |
GENERATOR_MODEL = os.getenv("GENERATOR_MODEL", "distilgpt2")
|
|
|
|
| 53 |
|
| 54 |
app = FastAPI(
|
| 55 |
title="Docker Model Runner",
|
| 56 |
+
description="Anthropic API Compatible with Interleaved Thinking",
|
| 57 |
version="1.0.0",
|
| 58 |
lifespan=lifespan
|
| 59 |
)
|
|
|
|
| 71 |
thinking: str
|
| 72 |
|
| 73 |
|
| 74 |
+
class SignatureBlock(BaseModel):
|
| 75 |
+
type: Literal["signature"] = "signature"
|
| 76 |
+
signature: str
|
| 77 |
+
|
| 78 |
+
|
| 79 |
class ToolUseBlock(BaseModel):
|
| 80 |
type: Literal["tool_use"] = "tool_use"
|
| 81 |
id: str
|
|
|
|
| 102 |
source: ImageSource
|
| 103 |
|
| 104 |
|
| 105 |
+
ContentBlock = Union[TextBlock, ThinkingBlock, SignatureBlock, ToolUseBlock, ToolResultContent, ImageBlock, str]
|
| 106 |
|
| 107 |
|
| 108 |
class MessageParam(BaseModel):
|
|
|
|
| 125 |
class ToolChoice(BaseModel):
|
| 126 |
type: Literal["auto", "any", "tool"] = "auto"
|
| 127 |
name: Optional[str] = None
|
| 128 |
+
disable_parallel_tool_use: Optional[bool] = False
|
| 129 |
|
| 130 |
|
| 131 |
class ThinkingConfig(BaseModel):
|
|
|
|
| 148 |
stream: Optional[bool] = False
|
| 149 |
system: Optional[Union[str, List[TextBlock]]] = None
|
| 150 |
tools: Optional[List[Tool]] = None
|
| 151 |
+
tool_choice: Optional[Union[ToolChoice, Dict[str, Any]]] = None
|
| 152 |
metadata: Optional[Metadata] = None
|
| 153 |
thinking: Optional[ThinkingConfig] = None
|
| 154 |
service_tier: Optional[str] = None # Ignored
|
|
|
|
| 165 |
id: str
|
| 166 |
type: Literal["message"] = "message"
|
| 167 |
role: Literal["assistant"] = "assistant"
|
| 168 |
+
content: List[Union[TextBlock, ThinkingBlock, SignatureBlock, ToolUseBlock]]
|
| 169 |
model: str
|
| 170 |
stop_reason: Optional[Literal["end_turn", "max_tokens", "stop_sequence", "tool_use"]] = "end_turn"
|
| 171 |
stop_sequence: Optional[str] = None
|
| 172 |
usage: Usage
|
| 173 |
|
| 174 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 175 |
# ============== Helper Functions ==============
|
| 176 |
|
| 177 |
def extract_text_from_content(content: Union[str, List[ContentBlock]]) -> str:
|
|
|
|
| 204 |
return " ".join([block.text for block in system if hasattr(block, 'text')])
|
| 205 |
|
| 206 |
|
| 207 |
+
def format_messages_to_prompt(messages: List[MessageParam], system: Optional[Union[str, List[TextBlock]]] = None, include_thinking: bool = False) -> str:
|
| 208 |
"""Convert chat messages to a single prompt string"""
|
| 209 |
prompt_parts = []
|
| 210 |
|
|
|
|
| 214 |
|
| 215 |
for msg in messages:
|
| 216 |
role = msg.role
|
| 217 |
+
content = msg.content
|
| 218 |
+
|
| 219 |
+
# Handle interleaved thinking in message history
|
| 220 |
+
if isinstance(content, list):
|
| 221 |
+
for block in content:
|
| 222 |
+
if isinstance(block, dict):
|
| 223 |
+
block_type = block.get('type', 'text')
|
| 224 |
+
if block_type == 'thinking' and include_thinking:
|
| 225 |
+
prompt_parts.append(f"<thinking>{block.get('thinking', '')}</thinking>\n")
|
| 226 |
+
elif block_type == 'text':
|
| 227 |
+
if role == "user":
|
| 228 |
+
prompt_parts.append(f"Human: {block.get('text', '')}\n\n")
|
| 229 |
+
else:
|
| 230 |
+
prompt_parts.append(f"Assistant: {block.get('text', '')}\n\n")
|
| 231 |
+
elif hasattr(block, 'type'):
|
| 232 |
+
if block.type == 'thinking' and include_thinking:
|
| 233 |
+
prompt_parts.append(f"<thinking>{block.thinking}</thinking>\n")
|
| 234 |
+
elif block.type == 'text':
|
| 235 |
+
if role == "user":
|
| 236 |
+
prompt_parts.append(f"Human: {block.text}\n\n")
|
| 237 |
+
else:
|
| 238 |
+
prompt_parts.append(f"Assistant: {block.text}\n\n")
|
| 239 |
+
else:
|
| 240 |
+
content_text = content if isinstance(content, str) else extract_text_from_content(content)
|
| 241 |
+
if role == "user":
|
| 242 |
+
prompt_parts.append(f"Human: {content_text}\n\n")
|
| 243 |
+
elif role == "assistant":
|
| 244 |
+
prompt_parts.append(f"Assistant: {content_text}\n\n")
|
| 245 |
|
| 246 |
prompt_parts.append("Assistant:")
|
| 247 |
return "".join(prompt_parts)
|
|
|
|
| 258 |
with torch.no_grad():
|
| 259 |
outputs = model.generate(
|
| 260 |
**inputs,
|
| 261 |
+
max_new_tokens=min(max_tokens, 256),
|
| 262 |
temperature=temperature if temperature > 0 else 1.0,
|
| 263 |
top_p=top_p,
|
| 264 |
do_sample=temperature > 0,
|
|
|
|
| 273 |
return generated_text.strip(), input_tokens, output_tokens
|
| 274 |
|
| 275 |
|
| 276 |
+
def generate_thinking(prompt: str, budget_tokens: int = 100) -> tuple:
|
| 277 |
+
"""Generate thinking/reasoning content"""
|
| 278 |
+
tokenizer = models["tokenizer"]
|
| 279 |
+
model = models["model"]
|
| 280 |
+
|
| 281 |
+
thinking_prompt = f"{prompt}\n\nLet me think through this step by step:\n"
|
| 282 |
+
|
| 283 |
+
inputs = tokenizer(thinking_prompt, return_tensors="pt", truncation=True, max_length=512)
|
| 284 |
+
input_tokens = inputs["input_ids"].shape[1]
|
| 285 |
+
|
| 286 |
+
with torch.no_grad():
|
| 287 |
+
outputs = model.generate(
|
| 288 |
+
**inputs,
|
| 289 |
+
max_new_tokens=min(budget_tokens, 128),
|
| 290 |
+
temperature=0.7,
|
| 291 |
+
top_p=0.9,
|
| 292 |
+
do_sample=True,
|
| 293 |
+
pad_token_id=tokenizer.pad_token_id,
|
| 294 |
+
eos_token_id=tokenizer.eos_token_id
|
| 295 |
+
)
|
| 296 |
+
|
| 297 |
+
generated_tokens = outputs[0][input_tokens:]
|
| 298 |
+
thinking_tokens = len(generated_tokens)
|
| 299 |
+
thinking_text = tokenizer.decode(generated_tokens, skip_special_tokens=True)
|
| 300 |
+
|
| 301 |
+
return thinking_text.strip(), thinking_tokens
|
| 302 |
+
|
| 303 |
+
|
| 304 |
+
async def generate_stream_with_thinking(
|
| 305 |
+
prompt: str,
|
| 306 |
+
max_tokens: int,
|
| 307 |
+
temperature: float,
|
| 308 |
+
top_p: float,
|
| 309 |
+
message_id: str,
|
| 310 |
+
model_name: str,
|
| 311 |
+
thinking_enabled: bool = False,
|
| 312 |
+
thinking_budget: int = 100
|
| 313 |
+
):
|
| 314 |
+
"""Generate streaming response with interleaved thinking in Anthropic SSE format"""
|
| 315 |
tokenizer = models["tokenizer"]
|
| 316 |
model = models["model"]
|
| 317 |
|
| 318 |
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
|
| 319 |
input_tokens = inputs["input_ids"].shape[1]
|
| 320 |
+
total_output_tokens = 0
|
| 321 |
|
| 322 |
# Send message_start event
|
| 323 |
message_start = {
|
|
|
|
| 335 |
}
|
| 336 |
yield f"event: message_start\ndata: {json.dumps(message_start)}\n\n"
|
| 337 |
|
| 338 |
+
content_index = 0
|
| 339 |
+
|
| 340 |
+
# Generate thinking block if enabled
|
| 341 |
+
if thinking_enabled:
|
| 342 |
+
# Send thinking content_block_start
|
| 343 |
+
thinking_block_start = {
|
| 344 |
+
"type": "content_block_start",
|
| 345 |
+
"index": content_index,
|
| 346 |
+
"content_block": {"type": "thinking", "thinking": ""}
|
| 347 |
+
}
|
| 348 |
+
yield f"event: content_block_start\ndata: {json.dumps(thinking_block_start)}\n\n"
|
| 349 |
+
|
| 350 |
+
# Generate thinking content
|
| 351 |
+
thinking_text, thinking_tokens = generate_thinking(prompt, thinking_budget)
|
| 352 |
+
total_output_tokens += thinking_tokens
|
| 353 |
+
|
| 354 |
+
# Stream thinking in chunks
|
| 355 |
+
chunk_size = 10
|
| 356 |
+
for i in range(0, len(thinking_text), chunk_size):
|
| 357 |
+
chunk = thinking_text[i:i+chunk_size]
|
| 358 |
+
thinking_delta = {
|
| 359 |
+
"type": "content_block_delta",
|
| 360 |
+
"index": content_index,
|
| 361 |
+
"delta": {"type": "thinking_delta", "thinking": chunk}
|
| 362 |
+
}
|
| 363 |
+
yield f"event: content_block_delta\ndata: {json.dumps(thinking_delta)}\n\n"
|
| 364 |
+
await asyncio.sleep(0.01)
|
| 365 |
+
|
| 366 |
+
# Send thinking content_block_stop
|
| 367 |
+
thinking_block_stop = {"type": "content_block_stop", "index": content_index}
|
| 368 |
+
yield f"event: content_block_stop\ndata: {json.dumps(thinking_block_stop)}\n\n"
|
| 369 |
+
|
| 370 |
+
content_index += 1
|
| 371 |
+
|
| 372 |
+
# Send text content_block_start
|
| 373 |
+
text_block_start = {
|
| 374 |
"type": "content_block_start",
|
| 375 |
+
"index": content_index,
|
| 376 |
"content_block": {"type": "text", "text": ""}
|
| 377 |
}
|
| 378 |
+
yield f"event: content_block_start\ndata: {json.dumps(text_block_start)}\n\n"
|
| 379 |
|
| 380 |
+
# Generate main response
|
| 381 |
with torch.no_grad():
|
| 382 |
outputs = model.generate(
|
| 383 |
**inputs,
|
|
|
|
| 391 |
|
| 392 |
generated_tokens = outputs[0][input_tokens:]
|
| 393 |
generated_text = tokenizer.decode(generated_tokens, skip_special_tokens=True).strip()
|
| 394 |
+
total_output_tokens += len(generated_tokens)
|
| 395 |
|
| 396 |
# Stream text in chunks
|
| 397 |
chunk_size = 5
|
| 398 |
for i in range(0, len(generated_text), chunk_size):
|
| 399 |
chunk = generated_text[i:i+chunk_size]
|
| 400 |
+
text_delta = {
|
| 401 |
"type": "content_block_delta",
|
| 402 |
+
"index": content_index,
|
| 403 |
"delta": {"type": "text_delta", "text": chunk}
|
| 404 |
}
|
| 405 |
+
yield f"event: content_block_delta\ndata: {json.dumps(text_delta)}\n\n"
|
| 406 |
+
await asyncio.sleep(0.01)
|
| 407 |
|
| 408 |
+
# Send text content_block_stop
|
| 409 |
+
text_block_stop = {"type": "content_block_stop", "index": content_index}
|
| 410 |
+
yield f"event: content_block_stop\ndata: {json.dumps(text_block_stop)}\n\n"
|
| 411 |
|
| 412 |
# Send message_delta event
|
| 413 |
message_delta = {
|
| 414 |
"type": "message_delta",
|
| 415 |
"delta": {"stop_reason": "end_turn", "stop_sequence": None},
|
| 416 |
+
"usage": {"output_tokens": total_output_tokens}
|
| 417 |
}
|
| 418 |
yield f"event: message_delta\ndata: {json.dumps(message_delta)}\n\n"
|
| 419 |
|
|
|
|
| 427 |
if not tools:
|
| 428 |
return None
|
| 429 |
|
|
|
|
| 430 |
for tool in tools:
|
| 431 |
if tool.name.lower() in generated_text.lower():
|
| 432 |
return ToolUseBlock(
|
|
|
|
| 443 |
@app.post("/v1/messages")
|
| 444 |
async def create_message(request: AnthropicRequest):
|
| 445 |
"""
|
| 446 |
+
Anthropic Messages API compatible endpoint with Interleaved Thinking
|
| 447 |
|
| 448 |
POST /v1/messages
|
| 449 |
|
|
|
|
| 452 |
- System prompts
|
| 453 |
- Streaming responses
|
| 454 |
- Tool/function calling
|
| 455 |
+
- Interleaved thinking blocks
|
| 456 |
+
- Thinking budget tokens
|
| 457 |
+
- Metadata
|
| 458 |
"""
|
| 459 |
try:
|
| 460 |
message_id = f"msg_{uuid.uuid4().hex[:24]}"
|
| 461 |
|
| 462 |
+
# Check if thinking is enabled
|
| 463 |
+
thinking_enabled = False
|
| 464 |
+
thinking_budget = 100
|
| 465 |
+
if request.thinking:
|
| 466 |
+
if isinstance(request.thinking, dict):
|
| 467 |
+
thinking_enabled = request.thinking.get('type') == 'enabled'
|
| 468 |
+
thinking_budget = request.thinking.get('budget_tokens', 100)
|
| 469 |
+
else:
|
| 470 |
+
thinking_enabled = request.thinking.type == 'enabled'
|
| 471 |
+
thinking_budget = request.thinking.budget_tokens or 100
|
| 472 |
+
|
| 473 |
+
# Format messages to prompt (include thinking from history if enabled)
|
| 474 |
+
prompt = format_messages_to_prompt(request.messages, request.system, include_thinking=thinking_enabled)
|
| 475 |
|
| 476 |
# Handle streaming
|
| 477 |
if request.stream:
|
| 478 |
return StreamingResponse(
|
| 479 |
+
generate_stream_with_thinking(
|
| 480 |
prompt=prompt,
|
| 481 |
max_tokens=request.max_tokens,
|
| 482 |
temperature=request.temperature or 1.0,
|
| 483 |
top_p=request.top_p or 1.0,
|
| 484 |
message_id=message_id,
|
| 485 |
+
model_name=request.model,
|
| 486 |
+
thinking_enabled=thinking_enabled,
|
| 487 |
+
thinking_budget=thinking_budget
|
| 488 |
),
|
| 489 |
media_type="text/event-stream",
|
| 490 |
headers={
|
|
|
|
| 495 |
)
|
| 496 |
|
| 497 |
# Non-streaming response
|
| 498 |
+
content_blocks = []
|
| 499 |
+
total_output_tokens = 0
|
| 500 |
+
|
| 501 |
+
# Generate thinking block if enabled
|
| 502 |
+
if thinking_enabled:
|
| 503 |
+
thinking_text, thinking_tokens = generate_thinking(prompt, thinking_budget)
|
| 504 |
+
total_output_tokens += thinking_tokens
|
| 505 |
+
content_blocks.append(ThinkingBlock(type="thinking", thinking=thinking_text))
|
| 506 |
+
|
| 507 |
+
# Generate main response
|
| 508 |
generated_text, input_tokens, output_tokens = generate_text(
|
| 509 |
prompt=prompt,
|
| 510 |
max_tokens=request.max_tokens,
|
| 511 |
temperature=request.temperature or 1.0,
|
| 512 |
top_p=request.top_p or 1.0
|
| 513 |
)
|
| 514 |
+
total_output_tokens += output_tokens
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 515 |
|
| 516 |
# Check for tool calls
|
| 517 |
tool_use = handle_tool_call(request.tools, request.messages, generated_text) if request.tools else None
|
|
|
|
| 529 |
content=content_blocks,
|
| 530 |
model=request.model,
|
| 531 |
stop_reason=stop_reason,
|
| 532 |
+
usage=Usage(input_tokens=input_tokens, output_tokens=total_output_tokens)
|
| 533 |
)
|
| 534 |
except Exception as e:
|
| 535 |
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
| 555 |
async def chat_completions(request: ChatCompletionRequest):
|
| 556 |
"""OpenAI Chat Completions API compatible endpoint"""
|
| 557 |
try:
|
|
|
|
| 558 |
anthropic_messages = [
|
| 559 |
MessageParam(role=msg.role if msg.role in ["user", "assistant"] else "user",
|
| 560 |
content=msg.content)
|
|
|
|
| 609 |
async def root():
|
| 610 |
"""Welcome endpoint"""
|
| 611 |
return {
|
| 612 |
+
"message": "Docker Model Runner API (Anthropic Compatible + Interleaved Thinking)",
|
| 613 |
"hardware": "CPU Basic: 2 vCPU · 16 GB RAM",
|
| 614 |
"docs": "/docs",
|
| 615 |
"api_endpoints": {
|
|
|
|
| 622 |
"system prompts",
|
| 623 |
"streaming responses",
|
| 624 |
"tool/function calling",
|
| 625 |
+
"interleaved thinking blocks",
|
| 626 |
+
"thinking budget tokens",
|
| 627 |
"metadata"
|
| 628 |
]
|
| 629 |
}
|
|
|
|
| 645 |
"""API information"""
|
| 646 |
return {
|
| 647 |
"name": "Docker Model Runner",
|
| 648 |
+
"version": "1.1.0",
|
| 649 |
"api_compatibility": ["anthropic", "openai"],
|
| 650 |
"supported_models": ["MiniMax-M2", "MiniMax-M2-Stable"],
|
| 651 |
+
"interleaved_thinking": {
|
| 652 |
+
"supported": True,
|
| 653 |
+
"streaming": True,
|
| 654 |
+
"budget_tokens": True
|
| 655 |
+
},
|
| 656 |
"supported_parameters": {
|
| 657 |
"fully_supported": ["model", "messages", "max_tokens", "stream", "system", "temperature", "top_p", "tools", "tool_choice", "metadata", "thinking"],
|
| 658 |
"ignored": ["top_k", "stop_sequences", "service_tier"]
|