File size: 18,585 Bytes
09b5534 f238f35 7270816 ab0cf4f 09b5534 f238f35 1ea9642 51159ea f238f35 09b5534 f238f35 09b5534 ab0cf4f 51159ea f238f35 7270816 09b5534 ab0cf4f f238f35 ab0cf4f 09b5534 ab0cf4f 09b5534 ab0cf4f 09b5534 f238f35 09b5534 f238f35 09b5534 ab0cf4f 09b5534 ab0cf4f 1ea9642 7270816 ab0cf4f 1ea9642 ab0cf4f 09b5534 51159ea f238f35 51159ea 09b5534 f238f35 51159ea 7270816 f238f35 51159ea f238f35 51159ea f238f35 51159ea f238f35 51159ea 09b5534 7270816 09b5534 f238f35 09b5534 51159ea f238f35 51159ea f238f35 51159ea f238f35 7270816 51159ea f238f35 09b5534 f238f35 09b5534 f238f35 1ea9642 f238f35 7270816 f238f35 1ea9642 09b5534 f238f35 09b5534 f238f35 51159ea f238f35 7270816 f238f35 51159ea f238f35 7270816 f238f35 7270816 f238f35 51159ea f238f35 51159ea 7270816 51159ea 7270816 1ea9642 f238f35 7270816 51159ea f238f35 1ea9642 f238f35 51159ea 7270816 1ea9642 7270816 1ea9642 7270816 1ea9642 7270816 1ea9642 51159ea f238f35 1ea9642 51159ea f238f35 7270816 f238f35 1ea9642 7270816 f238f35 1ea9642 f238f35 1ea9642 f238f35 51159ea 1ea9642 51159ea f238f35 51159ea f238f35 7270816 51159ea f238f35 1ea9642 f238f35 1ea9642 f238f35 7270816 1ea9642 7270816 f238f35 1ea9642 51159ea 1ea9642 51159ea f238f35 09b5534 f238f35 51159ea 1ea9642 f238f35 1ea9642 51159ea f238f35 51159ea 1ea9642 09b5534 f238f35 09b5534 1ea9642 09b5534 51159ea 09b5534 1ea9642 09b5534 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 |
"""
Docker Model Runner - Anthropic API Compatible
Full compatibility with Anthropic Messages API + Interleaved Thinking
Optimized for: 2 vCPU, 16GB RAM
"""
from fastapi import FastAPI, HTTPException, Header, Request
from fastapi.responses import StreamingResponse, HTMLResponse, FileResponse
from fastapi.staticfiles import StaticFiles
from pydantic import BaseModel, Field
from typing import Optional, List, Union, Literal, Any, Dict
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import os
from datetime import datetime
from contextlib import asynccontextmanager
import uuid
import time
import json
import asyncio
import re
# CPU-optimized lightweight models
GENERATOR_MODEL = os.getenv("GENERATOR_MODEL", "distilgpt2")
MODEL_DISPLAY_NAME = os.getenv("MODEL_NAME", "MiniMax-M2")
# Set CPU threading
torch.set_num_threads(2)
# Global model cache
models = {}
def load_models():
"""Pre-load models for faster inference"""
global models
print("Loading models for CPU inference...")
models["tokenizer"] = AutoTokenizer.from_pretrained(GENERATOR_MODEL)
models["model"] = AutoModelForCausalLM.from_pretrained(GENERATOR_MODEL)
models["model"].eval()
if models["tokenizer"].pad_token is None:
models["tokenizer"].pad_token = models["tokenizer"].eos_token
print("✅ All models loaded successfully!")
@asynccontextmanager
async def lifespan(app: FastAPI):
load_models()
yield
models.clear()
app = FastAPI(
title="Model Runner",
description="Anthropic API Compatible with Interleaved Thinking",
version="1.0.0",
lifespan=lifespan,
docs_url="/api/docs",
redoc_url="/api/redoc"
)
# ============== Anthropic API Models ==============
class TextBlock(BaseModel):
type: Literal["text"] = "text"
text: str
class ThinkingBlock(BaseModel):
type: Literal["thinking"] = "thinking"
thinking: str
class SignatureBlock(BaseModel):
type: Literal["signature"] = "signature"
signature: str
class ToolUseBlock(BaseModel):
type: Literal["tool_use"] = "tool_use"
id: str
name: str
input: Dict[str, Any]
class ToolResultContent(BaseModel):
type: Literal["tool_result"] = "tool_result"
tool_use_id: str
content: Union[str, List[TextBlock]]
is_error: Optional[bool] = False
class ImageSource(BaseModel):
type: Literal["base64", "url"]
media_type: Optional[str] = None
data: Optional[str] = None
url: Optional[str] = None
class ImageBlock(BaseModel):
type: Literal["image"] = "image"
source: ImageSource
ContentBlock = Union[TextBlock, ThinkingBlock, SignatureBlock, ToolUseBlock, ToolResultContent, ImageBlock, str]
class MessageParam(BaseModel):
role: Literal["user", "assistant"]
content: Union[str, List[ContentBlock]]
class ToolInputSchema(BaseModel):
type: str = "object"
properties: Optional[Dict[str, Any]] = None
required: Optional[List[str]] = None
class Tool(BaseModel):
name: str
description: str
input_schema: ToolInputSchema
class ToolChoice(BaseModel):
type: Literal["auto", "any", "tool"] = "auto"
name: Optional[str] = None
disable_parallel_tool_use: Optional[bool] = False
class ThinkingConfig(BaseModel):
type: Literal["enabled", "disabled"] = "disabled"
budget_tokens: Optional[int] = None
class Metadata(BaseModel):
user_id: Optional[str] = None
class AnthropicRequest(BaseModel):
model: str = "MiniMax-M2"
messages: List[MessageParam]
max_tokens: int = 1024
temperature: Optional[float] = Field(default=1.0, gt=0.0, le=1.0)
top_p: Optional[float] = Field(default=1.0, gt=0.0, le=1.0)
top_k: Optional[int] = None
stop_sequences: Optional[List[str]] = None
stream: Optional[bool] = False
system: Optional[Union[str, List[TextBlock]]] = None
tools: Optional[List[Tool]] = None
tool_choice: Optional[Union[ToolChoice, Dict[str, Any]]] = None
metadata: Optional[Metadata] = None
thinking: Optional[ThinkingConfig] = None
service_tier: Optional[str] = None
class Usage(BaseModel):
input_tokens: int
output_tokens: int
cache_creation_input_tokens: Optional[int] = 0
cache_read_input_tokens: Optional[int] = 0
class AnthropicResponse(BaseModel):
id: str
type: Literal["message"] = "message"
role: Literal["assistant"] = "assistant"
content: List[Union[TextBlock, ThinkingBlock, SignatureBlock, ToolUseBlock]]
model: str
stop_reason: Optional[Literal["end_turn", "max_tokens", "stop_sequence", "tool_use"]] = "end_turn"
stop_sequence: Optional[str] = None
usage: Usage
# ============== Helper Functions ==============
def extract_text_from_content(content: Union[str, List[ContentBlock]]) -> str:
if isinstance(content, str):
return content
texts = []
for block in content:
if isinstance(block, str):
texts.append(block)
elif hasattr(block, 'text'):
texts.append(block.text)
elif hasattr(block, 'thinking'):
texts.append(block.thinking)
elif isinstance(block, dict):
if block.get('type') == 'text':
texts.append(block.get('text', ''))
elif block.get('type') == 'thinking':
texts.append(block.get('thinking', ''))
return " ".join(texts)
def format_system_prompt(system: Optional[Union[str, List[TextBlock]]]) -> str:
if system is None:
return ""
if isinstance(system, str):
return system
return " ".join([block.text for block in system if hasattr(block, 'text')])
def format_messages_to_prompt(messages: List[MessageParam], system: Optional[Union[str, List[TextBlock]]] = None, include_thinking: bool = False) -> str:
prompt_parts = []
system_text = format_system_prompt(system)
if system_text:
prompt_parts.append(f"System: {system_text}\n\n")
for msg in messages:
role = msg.role
content = msg.content
if isinstance(content, list):
for block in content:
if isinstance(block, dict):
block_type = block.get('type', 'text')
if block_type == 'thinking' and include_thinking:
prompt_parts.append(f"<thinking>{block.get('thinking', '')}</thinking>\n")
elif block_type == 'text':
if role == "user":
prompt_parts.append(f"Human: {block.get('text', '')}\n\n")
else:
prompt_parts.append(f"Assistant: {block.get('text', '')}\n\n")
elif hasattr(block, 'type'):
if block.type == 'thinking' and include_thinking:
prompt_parts.append(f"<thinking>{block.thinking}</thinking>\n")
elif block.type == 'text':
if role == "user":
prompt_parts.append(f"Human: {block.text}\n\n")
else:
prompt_parts.append(f"Assistant: {block.text}\n\n")
else:
content_text = content if isinstance(content, str) else extract_text_from_content(content)
if role == "user":
prompt_parts.append(f"Human: {content_text}\n\n")
elif role == "assistant":
prompt_parts.append(f"Assistant: {content_text}\n\n")
prompt_parts.append("Assistant:")
return "".join(prompt_parts)
def generate_text(prompt: str, max_tokens: int, temperature: float, top_p: float) -> tuple:
tokenizer = models["tokenizer"]
model = models["model"]
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
input_tokens = inputs["input_ids"].shape[1]
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=min(max_tokens, 256),
temperature=temperature if temperature > 0 else 1.0,
top_p=top_p,
do_sample=temperature > 0,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id
)
generated_tokens = outputs[0][input_tokens:]
output_tokens = len(generated_tokens)
generated_text = tokenizer.decode(generated_tokens, skip_special_tokens=True)
return generated_text.strip(), input_tokens, output_tokens
def generate_thinking(prompt: str, budget_tokens: int = 100) -> tuple:
tokenizer = models["tokenizer"]
model = models["model"]
thinking_prompt = f"{prompt}\n\nLet me think through this step by step:\n"
inputs = tokenizer(thinking_prompt, return_tensors="pt", truncation=True, max_length=512)
input_tokens = inputs["input_ids"].shape[1]
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=min(budget_tokens, 128),
temperature=0.7,
top_p=0.9,
do_sample=True,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id
)
generated_tokens = outputs[0][input_tokens:]
thinking_tokens = len(generated_tokens)
thinking_text = tokenizer.decode(generated_tokens, skip_special_tokens=True)
return thinking_text.strip(), thinking_tokens
async def generate_stream_with_thinking(prompt: str, max_tokens: int, temperature: float, top_p: float, message_id: str, model_name: str, thinking_enabled: bool = False, thinking_budget: int = 100):
tokenizer = models["tokenizer"]
model = models["model"]
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
input_tokens = inputs["input_ids"].shape[1]
total_output_tokens = 0
message_start = {
"type": "message_start",
"message": {"id": message_id, "type": "message", "role": "assistant", "content": [], "model": model_name, "stop_reason": None, "stop_sequence": None, "usage": {"input_tokens": input_tokens, "output_tokens": 0}}
}
yield f"event: message_start\ndata: {json.dumps(message_start)}\n\n"
content_index = 0
if thinking_enabled:
thinking_block_start = {"type": "content_block_start", "index": content_index, "content_block": {"type": "thinking", "thinking": ""}}
yield f"event: content_block_start\ndata: {json.dumps(thinking_block_start)}\n\n"
thinking_text, thinking_tokens = generate_thinking(prompt, thinking_budget)
total_output_tokens += thinking_tokens
for i in range(0, len(thinking_text), 10):
chunk = thinking_text[i:i+10]
yield f"event: content_block_delta\ndata: {json.dumps({'type': 'content_block_delta', 'index': content_index, 'delta': {'type': 'thinking_delta', 'thinking': chunk}})}\n\n"
await asyncio.sleep(0.01)
yield f"event: content_block_stop\ndata: {json.dumps({'type': 'content_block_stop', 'index': content_index})}\n\n"
content_index += 1
yield f"event: content_block_start\ndata: {json.dumps({'type': 'content_block_start', 'index': content_index, 'content_block': {'type': 'text', 'text': ''}})}\n\n"
with torch.no_grad():
outputs = model.generate(**inputs, max_new_tokens=min(max_tokens, 256), temperature=temperature if temperature > 0 else 1.0, top_p=top_p, do_sample=temperature > 0, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id)
generated_tokens = outputs[0][input_tokens:]
generated_text = tokenizer.decode(generated_tokens, skip_special_tokens=True).strip()
total_output_tokens += len(generated_tokens)
for i in range(0, len(generated_text), 5):
yield f"event: content_block_delta\ndata: {json.dumps({'type': 'content_block_delta', 'index': content_index, 'delta': {'type': 'text_delta', 'text': generated_text[i:i+5]}})}\n\n"
await asyncio.sleep(0.01)
yield f"event: content_block_stop\ndata: {json.dumps({'type': 'content_block_stop', 'index': content_index})}\n\n"
yield f"event: message_delta\ndata: {json.dumps({'type': 'message_delta', 'delta': {'stop_reason': 'end_turn', 'stop_sequence': None}, 'usage': {'output_tokens': total_output_tokens}})}\n\n"
yield f"event: message_stop\ndata: {json.dumps({'type': 'message_stop'})}\n\n"
def handle_tool_call(tools: List[Tool], messages: List[MessageParam], generated_text: str) -> Optional[ToolUseBlock]:
if not tools:
return None
for tool in tools:
if tool.name.lower() in generated_text.lower():
return ToolUseBlock(type="tool_use", id=f"toolu_{uuid.uuid4().hex[:24]}", name=tool.name, input={})
return None
# ============== Frontend ==============
@app.get("/", response_class=HTMLResponse)
async def home():
"""Serve the minimal centered frontend"""
try:
with open("/app/static/index.html", "r") as f:
return HTMLResponse(content=f.read())
except:
return HTMLResponse(content="""
<!DOCTYPE html>
<html><head><meta charset="UTF-8"><title>Model Runner</title>
<style>*{margin:0;padding:0}body{min-height:100vh;background:#000;display:flex;justify-content:center;align-items:center}
.logo{width:200px;height:200px;animation:float 3s ease-in-out infinite}
@keyframes float{0%,100%{transform:translateY(0)}50%{transform:translateY(-10px)}}</style></head>
<body><div class="logo"><svg viewBox="0 0 200 200" fill="none">
<defs><linearGradient id="r" x1="0%" y1="100%" x2="100%" y2="0%">
<stop offset="0%" stop-color="#ff0080"/><stop offset="25%" stop-color="#ff4d00"/>
<stop offset="50%" stop-color="#ffcc00"/><stop offset="75%" stop-color="#00ff88"/>
<stop offset="100%" stop-color="#00ccff"/></linearGradient></defs>
<path d="M100 20 L180 160 L20 160 Z" stroke="url(#r)" stroke-width="12" stroke-linecap="round" fill="none"/>
<path d="M100 70 L130 130 L70 130 Z" stroke="url(#r)" stroke-width="8" stroke-linecap="round" fill="none"/>
<line x1="80" y1="115" x2="120" y2="115" stroke="url(#r)" stroke-width="6" stroke-linecap="round"/>
</svg></div></body></html>
""")
# ============== Anthropic API Endpoints ==============
@app.post("/v1/messages")
async def create_message(request: AnthropicRequest):
try:
message_id = f"msg_{uuid.uuid4().hex[:24]}"
thinking_enabled = False
thinking_budget = 100
if request.thinking:
if isinstance(request.thinking, dict):
thinking_enabled = request.thinking.get('type') == 'enabled'
thinking_budget = request.thinking.get('budget_tokens', 100)
else:
thinking_enabled = request.thinking.type == 'enabled'
thinking_budget = request.thinking.budget_tokens or 100
prompt = format_messages_to_prompt(request.messages, request.system, include_thinking=thinking_enabled)
if request.stream:
return StreamingResponse(
generate_stream_with_thinking(prompt, request.max_tokens, request.temperature or 1.0, request.top_p or 1.0, message_id, request.model, thinking_enabled, thinking_budget),
media_type="text/event-stream",
headers={"Cache-Control": "no-cache", "Connection": "keep-alive", "X-Accel-Buffering": "no"}
)
content_blocks = []
total_output_tokens = 0
if thinking_enabled:
thinking_text, thinking_tokens = generate_thinking(prompt, thinking_budget)
total_output_tokens += thinking_tokens
content_blocks.append(ThinkingBlock(type="thinking", thinking=thinking_text))
generated_text, input_tokens, output_tokens = generate_text(prompt, request.max_tokens, request.temperature or 1.0, request.top_p or 1.0)
total_output_tokens += output_tokens
tool_use = handle_tool_call(request.tools, request.messages, generated_text) if request.tools else None
if tool_use:
content_blocks.append(TextBlock(type="text", text=generated_text))
content_blocks.append(tool_use)
stop_reason = "tool_use"
else:
content_blocks.append(TextBlock(type="text", text=generated_text))
stop_reason = "end_turn"
return AnthropicResponse(id=message_id, content=content_blocks, model=request.model, stop_reason=stop_reason, usage=Usage(input_tokens=input_tokens, output_tokens=total_output_tokens))
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
# ============== OpenAI Compatible ==============
class ChatMessage(BaseModel):
role: str
content: str
class ChatCompletionRequest(BaseModel):
model: str = "distilgpt2"
messages: List[ChatMessage]
max_tokens: Optional[int] = 1024
temperature: Optional[float] = 0.7
top_p: Optional[float] = 1.0
stream: Optional[bool] = False
@app.post("/v1/chat/completions")
async def chat_completions(request: ChatCompletionRequest):
try:
anthropic_messages = [MessageParam(role=msg.role if msg.role in ["user", "assistant"] else "user", content=msg.content) for msg in request.messages if msg.role in ["user", "assistant"]]
prompt = format_messages_to_prompt(anthropic_messages)
generated_text, input_tokens, output_tokens = generate_text(prompt, request.max_tokens or 1024, request.temperature or 0.7, request.top_p or 1.0)
return {"id": f"chatcmpl-{uuid.uuid4().hex[:24]}", "object": "chat.completion", "created": int(time.time()), "model": request.model, "choices": [{"index": 0, "message": {"role": "assistant", "content": generated_text}, "finish_reason": "stop"}], "usage": {"prompt_tokens": input_tokens, "completion_tokens": output_tokens, "total_tokens": input_tokens + output_tokens}}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/v1/models")
async def list_models():
return {"object": "list", "data": [{"id": "MiniMax-M2", "object": "model", "created": int(time.time()), "owned_by": "local"}, {"id": "MiniMax-M2-Stable", "object": "model", "created": int(time.time()), "owned_by": "local"}, {"id": GENERATOR_MODEL, "object": "model", "created": int(time.time()), "owned_by": "local"}]}
@app.get("/health")
async def health():
return {"status": "healthy", "timestamp": datetime.utcnow().isoformat(), "models_loaded": len(models) > 0}
@app.get("/info")
async def info():
return {"name": "Model Runner", "version": "1.1.0", "api_compatibility": ["anthropic", "openai"], "interleaved_thinking": True}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)
|