File size: 60,223 Bytes
5dd4d41 47b7c6b 991278f 47b7c6b 5dd4d41 991278f 5dd4d41 46632d2 5dd4d41 7569088 5dd4d41 f6adf18 0cb5bc4 f6adf18 783e612 3496b5b 783e612 3496b5b 783e612 3496b5b 783e612 3496b5b 783e612 3496b5b 783e612 5dd4d41 3c56581 5dd4d41 3c56581 5dd4d41 3aaf8da 3c56581 3aaf8da 3c56581 3aaf8da 3c56581 3aaf8da 3c56581 3aaf8da 3c56581 5dd4d41 3c56581 5dd4d41 3c56581 5dd4d41 f6adf18 5dd4d41 7569088 5dd4d41 46632d2 5dd4d41 f6dfc71 5dd4d41 f6dfc71 5dd4d41 991278f 5dd4d41 072e3b7 5dd4d41 072e3b7 5dd4d41 7569088 5dd4d41 0cb5bc4 eaf554e 5dd4d41 eaf554e 46632d2 eaf554e 4c8935a eaf554e 5dd4d41 eaf554e 5dd4d41 4c8935a eaf554e 4c8935a 5dd4d41 eaf554e 5dd4d41 0cb5bc4 1dd112b f6dfc71 0cb5bc4 f6dfc71 1dd112b f6dfc71 1dd112b 0cb5bc4 eaf554e 5dd4d41 79b3f7b 5dd4d41 79b3f7b 5dd4d41 ec209fa 5dd4d41 79b3f7b 5dd4d41 79b3f7b 5dd4d41 79b3f7b 5dd4d41 79b3f7b 5dd4d41 072e3b7 5dd4d41 79b3f7b 5dd4d41 79b3f7b 5dd4d41 79b3f7b 5dd4d41 79b3f7b 5dd4d41 79b3f7b f6dfc71 5dd4d41 5c7e627 5dd4d41 1f96d2c 5dd4d41 046c99d 5dd4d41 f6adf18 5dd4d41 783e612 5dd4d41 eaf554e 5dd4d41 4935755 5dd4d41 3496b5b 5dd4d41 3496b5b 5dd4d41 3496b5b 5dd4d41 3496b5b 5dd4d41 3496b5b 5dd4d41 3496b5b 5dd4d41 3496b5b 5dd4d41 783e612 1f96d2c ec209fa 1f96d2c ec209fa 1f96d2c 5dd4d41 04eb087 1f96d2c 04eb087 1f96d2c 04eb087 1f96d2c 04eb087 aac60bf 04eb087 1f96d2c 046c99d 04eb087 1f96d2c 04eb087 1f96d2c 04eb087 1f96d2c 04eb087 090bc1e 046c99d 090bc1e 046c99d 090bc1e 04eb087 046c99d 991278f 5dd4d41 3c56581 5dd4d41 3c56581 d50bd8f 046c99d d50bd8f 046c99d d50bd8f 046c99d d50bd8f 046c99d 5dd4d41 3c56581 5dd4d41 3c56581 d50bd8f 046c99d d50bd8f 046c99d d50bd8f 046c99d d50bd8f 046c99d 5dd4d41 783e612 daf0675 672baca daf0675 5dd4d41 046c99d aac60bf 046c99d 5dd4d41 046c99d aac60bf 046c99d 5dd4d41 04eb087 5dd4d41 daf0675 04eb087 daf0675 783e612 5dd4d41 991278f f6dfc71 5dd4d41 f6dfc71 5dd4d41 f6dfc71 5dd4d41 f6dfc71 5dd4d41 faf6f83 f6dfc71 faf6f83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 |
import os
os.environ['GRADIO_TEMP_DIR'] = "tmp/"
import gradio as gr
import json
import random
from PIL import Image
from tqdm import tqdm
from collections import OrderedDict
import numpy as np
import torch
import shutil
import argparse
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
from matplotlib.offsetbox import OffsetImage, AnnotationBbox
from coda import CODA
from coda.datasets import Dataset
from coda.options import LOSS_FNS
from coda.oracle import Oracle
# Parse command line arguments
parser = argparse.ArgumentParser()
parser.add_argument('--debug', action='store_true', help='Enable debug mode with delete button')
args_cli = parser.parse_args()
DEBUG_MODE = args_cli.debug
if DEBUG_MODE:
print("Debug mode enabled - delete button will be available")
# Create deleted_in_app directory if it doesn't exist
os.makedirs('deleted_in_app', exist_ok=True)
with open('iwildcam_demo_annotations.json', 'r') as f:
data = json.load(f)
SPECIES_MAP = OrderedDict([
(24, "Jaguar"), # panthera onca
(10, "Ocelot"), # leopardus pardalis
(6, "Mountain Lion"), # puma concolor
(101, "Common Eland"), # tragelaphus oryx
(102, "Waterbuck"), # kobus ellipsiprymnus
])
NAME_TO_ID = {name: id for id, name in SPECIES_MAP.items()}
# Class names in order (0-4) from classes.txt
CLASS_NAMES = ["Jaguar", "Ocelot", "Mountain Lion", "Common Eland", "Waterbuck"]
NAME_TO_CLASS_IDX = {name: idx for idx, name in enumerate(CLASS_NAMES)}
# Model information from models.txt
MODEL_INFO = [
{"org": "Facebook", "name": "PE-Core", "logo": "logos/meta.png"},
{"org": "Google", "name": "SigLIP2", "logo": "logos/google.png"},
{"org": "OpenAI", "name": "CLIPViT-L", "logo": "logos/openai.png"},
{"org": "Imageomics", "name": "BioCLIP2", "logo": "logos/imageomics.png"},
{"org": "LAION", "name": "LAION CLIP", "logo": "logos/laion.png"}
]
DEMO_LEARNING_RATE = 0.05 # don't use default; use something more fun
DEMO_ALPHA = 0.9 # 0.25 # this is more fun if showing the confusion matrices
# Toggle between confusion matrix and accuracy chart
USE_CONFUSION_MATRIX = False # Set to True for confusion matrices, False for accuracy bars
def create_species_guide_content():
"""Create the species identification guide content"""
with gr.Column():
gr.Markdown("""
# Species Classification Guide
### Learn to identify the five wildlife species in this demo.
## Jaguar
""")
gr.Image("species_id/jaguar.jpg", label="Jaguar example image", show_label=False)
gr.Markdown("""
#### The largest cat in the Americas, with a stocky, muscular build and a broad head. Coat is patterned with rosettes that often have central spots inside.
----
## Ocelot
""")
gr.Image("species_id/ocelot.jpg", label="Ocelot example image", show_label=False)
gr.Markdown("""
#### Smaller and leaner than a jaguar, with more elongated markings and rounder ears.
----
## Mountain Lion
""")
gr.Image("species_id/mountainlion.jpg", label="Mountain lion example image", show_label=False)
gr.Markdown("""
#### Also called cougar or puma, this cat has a plain tawny or grayish coat without spots. Its long tail and uniformly colored fur distinguish it from jaguars and ocelots.
----
## Common Eland
""")
gr.Image("species_id/commoneland.jpg", label="Eland example image", show_label=False)
gr.Markdown("""
### The largest antelope species. Identifiable by its spiraled horns on both sexes. Lighter tan coat than a waterbuck.
----
## Waterbuck
""")
gr.Image("species_id/waterbuck.jpg", label="Waterbuck example image", show_label=False)
gr.Markdown("""
#### A shaggy, dark brown antelope. Identifiable by backward-curving horns in males, no horns on females. Larger, rounder ears and darker coat than the common eland.
----
""")
# load image metadata
images_data = []
for annotation in tqdm(data['annotations'], desc='Loading annotations'):
image_id = annotation['image_id']
category_id = annotation['category_id']
image_info = next((img for img in data['images'] if img['id'] == image_id), None)
if image_info:
images_data.append({
'filename': image_info['file_name'],
'species_id': category_id,
'species_name': SPECIES_MAP[category_id]
})
print(f"Loaded {len(images_data)} images for the quiz")
# Load image filenames list
with open('images.txt', 'r') as f:
full_image_filenames = [line.strip() for line in f.readlines() if line.strip()]
# Initialize full dataset (will be subsampled per-user)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load full dataset
full_preds = torch.load("iwildcam_demo.pt").to(device)
full_labels = torch.load("iwildcam_demo_labels.pt").to(device)
# Pre-compute class indices for subsampling
from collections import defaultdict
full_class_to_indices = defaultdict(list)
for idx, label in enumerate(full_labels):
class_idx = label.item()
full_class_to_indices[class_idx].append(idx)
# Find minimum class size
min_class_size = min(len(indices) for indices in full_class_to_indices.values())
print(f"Each user will get {min_class_size} images per class (total: {min_class_size * len(full_class_to_indices)} images per user)")
# Loss function for oracle
loss_fn = LOSS_FNS['acc']
# Global state (will be set per-user in start_demo)
current_image_info = None
coda_selector = None
oracle = None
dataset = None
image_filenames = None
iteration_count = 0
def get_model_predictions(chosen_idx):
"""Get model predictions and scores for a specific image"""
global dataset
if dataset is None or chosen_idx >= dataset.preds.shape[1]:
return "No predictions available"
# Get predictions for this image (shape: [num_models, num_classes])
image_preds = dataset.preds[:, chosen_idx, :].detach().cpu().numpy()
predictions_list = []
for model_idx in range(image_preds.shape[0]):
model_scores = image_preds[model_idx]
predicted_class_idx = model_scores.argmax()
predicted_class_name = CLASS_NAMES[predicted_class_idx]
confidence = model_scores[predicted_class_idx]
model_info = MODEL_INFO[model_idx]
predictions_list.append(f"**{model_info['name']}:** {predicted_class_name} *({confidence:.3f})*")
predictions_text = "### Model Predictions\n\n" + " | ".join(predictions_list)
return predictions_text
def add_logo_to_x_axis(ax, x_pos, logo_path, model_name, height_px=35):
"""Add a logo image to x-axis next to model name"""
try:
img = mpimg.imread(logo_path)
# Calculate zoom to achieve desired height in pixels
# Rough conversion: height_px / image_height / dpi * 72
zoom = height_px / min(img.shape[0],img.shape[1]) / ax.figure.dpi * 72
imagebox = OffsetImage(img, zoom=zoom)
# Position logo to the left of the x-tick
logo_offset = -0.28 # Adjust this to move logo left/right relative to tick
y_offset = -0.08
ab = AnnotationBbox(imagebox, (x_pos + logo_offset, y_offset),
xycoords=('data', 'axes fraction'), frameon=False)
ax.add_artist(ab)
except Exception as e:
print(f"Could not load logo {logo_path}: {e}")
def get_next_coda_image():
"""Get the next image that CODA wants labeled"""
global current_image_info, coda_selector, iteration_count
# Get next item from CODA
chosen_idx, selection_prob = coda_selector.get_next_item_to_label()
print("CODA chosen_idx, selection prob:", chosen_idx, selection_prob)
# Get the corresponding image filename
if chosen_idx < len(image_filenames):
filename = image_filenames[chosen_idx]
image_path = os.path.join('iwildcam_demo_images', filename)
print("Next image is", filename)
# Find the corresponding annotation for this image
current_image_info = None
for annotation in data['annotations']:
image_id = annotation['image_id']
image_info = next((img for img in data['images'] if img['id'] == image_id), None)
if image_info and image_info['file_name'] == filename:
current_image_info = {
'filename': filename,
'species_id': annotation['category_id'],
'species_name': SPECIES_MAP[annotation['category_id']],
'chosen_idx': chosen_idx,
'selection_prob': selection_prob
}
break
try:
image = Image.open(image_path)
predictions = get_model_predictions(chosen_idx)
return image, f"Iteration {iteration_count}: CODA selected this image for labeling", predictions
except Exception as e:
print(f"Error loading image {image_path}: {e}")
return None, f"Error loading image: {e}", "No predictions available"
else:
return None, "Image index out of range", "No predictions available"
def delete_current_image():
"""Delete the current image by moving it to deleted_in_app directory"""
global current_image_info, coda_selector
if current_image_info is None:
return "No image to delete!", None, "No predictions", None, None, ""
filename = current_image_info['filename']
chosen_idx = current_image_info['chosen_idx']
source_path = os.path.join('iwildcam_demo_images', filename)
dest_path = os.path.join('deleted_in_app', filename)
try:
shutil.move(source_path, dest_path)
result = f"β Moved {filename} to deleted_in_app/"
print(f"Deleted image: {filename}")
# Remove from CODA's unlabeled indices without adding a label
if chosen_idx in coda_selector.unlabeled_idxs:
coda_selector.unlabeled_idxs.remove(chosen_idx)
except Exception as e:
result = f"Error deleting image: {e}"
print(f"Error deleting {filename}: {e}")
# Load next image
next_image, status, predictions = get_next_coda_image()
status_html = f'{status} <span class="inline-help-btn" title="What is this?">?</span>'
# Get updated plots
prob_plot = create_probability_chart()
accuracy_plot = create_accuracy_chart()
return result, next_image, predictions, prob_plot, accuracy_plot, status_html
def check_answer(user_choice):
"""Process user's label and update CODA"""
global current_image_info, coda_selector, iteration_count
if current_image_info is None:
return "Please load an image first!", "", None, "No predictions", None, None
correct_species = current_image_info['species_name']
chosen_idx = current_image_info['chosen_idx']
selection_prob = current_image_info['selection_prob']
# Convert user choice to class index (0-5)
if user_choice == "I don't know":
# For "I don't know", just remove from sampling without providing label
coda_selector.unlabeled_idxs.remove(chosen_idx)
result = f"The last image was skipped and will not be used for model selection. The correct species was {correct_species}. "
else:
user_class_idx = NAME_TO_CLASS_IDX.get(user_choice, NAME_TO_CLASS_IDX[correct_species])
if user_choice == correct_species:
result = f"π Your last classification was correct! It was indeed a {correct_species}."
else:
result = f"β Your last classification was incorrect. It was a {correct_species}, not a {user_choice}. This may mislead the model selection process!"
# Update CODA with the label
coda_selector.add_label(chosen_idx, user_class_idx, selection_prob)
iteration_count += 1
# Get updated plots
prob_plot = create_probability_chart()
accuracy_plot = create_accuracy_chart()
# Load next image
next_image, status, predictions = get_next_coda_image()
# Create HTML with inline help button for status
status_html = f'{status} <span class="inline-help-btn" title="What is this?">?</span>'
return result, status_html, next_image, predictions, prob_plot, accuracy_plot
def create_probability_chart():
"""Create a bar chart showing probability each model is best"""
global coda_selector
if coda_selector is None:
# Fallback for initial state
model_labels = [info['name'] for info in MODEL_INFO]
probabilities = np.ones(len(MODEL_INFO)) / len(MODEL_INFO) # Uniform prior
else:
probs_tensor = coda_selector.get_pbest()
probabilities = probs_tensor.detach().cpu().numpy().flatten()
model_labels = [" "*(9 if info['name']=='LAION CLIP' else 4 if info['name']=='SigLIP2' else 6) + info['name'] for info in MODEL_INFO[:len(probabilities)]]
# Find the index of the highest probability
best_idx = np.argmax(probabilities)
fig, ax = plt.subplots(figsize=(8, 2.8), dpi=150)
# Create colors array - highlight the best model
colors = ['orange' if i == best_idx else 'steelblue' for i in range(len(model_labels))]
bars = ax.bar(range(len(model_labels)), probabilities, color=colors, alpha=0.7)
# Add text above the highest bar
ax.text(best_idx, probabilities[best_idx] + 0.0025, 'Current best guess',
ha='center', va='bottom', fontsize=12, fontweight='bold')
ax.set_ylabel('Probability model is best', fontsize=12)
ax.set_title(f'CODA Model Selection Probabilities (Iteration {iteration_count})', fontsize=12)
ax.set_ylim(np.min(probabilities) - 0.01, np.max(probabilities) + 0.02)
# Set x-axis labels and ticks
ax.set_xticks(range(len(model_labels)))
ax.set_xticklabels(model_labels, fontsize=12, ha='center')
# Add logos to x-axis
for i, model_info in enumerate(MODEL_INFO[:len(probabilities)]):
add_logo_to_x_axis(ax, i, model_info['logo'], model_info['name'])
plt.yticks(fontsize=12)
plt.tight_layout()
# Save the figure and close it to prevent memory leaks
temp_fig = fig
plt.close(fig)
return temp_fig
def create_accuracy_chart():
"""Create either confusion matrices or accuracy bar chart based on USE_CONFUSION_MATRIX toggle"""
global coda_selector, oracle, dataset, iteration_count
if USE_CONFUSION_MATRIX:
return create_confusion_matrix_chart()
else:
return create_accuracy_bar_chart()
def create_confusion_matrix_chart():
"""Create confusion matrix estimates for each model side by side"""
global coda_selector, iteration_count
if coda_selector is None:
# Fallback for initial state - return empty figure
fig, ax = plt.subplots(figsize=(8, 2.8), dpi=150)
ax.text(0.5, 0.5, 'Start demo to see confusion matrices',
ha='center', va='center', fontsize=12)
ax.axis('off')
plt.tight_layout()
temp_fig = fig
plt.close(fig)
return temp_fig
# Get confusion matrix estimates from CODA's Dirichlet distributions
dirichlets = coda_selector.dirichlets # Shape: [num_models, num_classes, num_classes]
num_models = dirichlets.shape[0]
num_classes = dirichlets.shape[1]
# Convert Dirichlet parameters to expected confusion matrices
# The expected value of a Dirichlet is alpha / sum(alpha)
confusion_matrices = []
for model_idx in range(num_models):
alpha = dirichlets[model_idx].detach().cpu().numpy()
# Normalize each row to get probabilities
conf_matrix = alpha / alpha.sum(axis=1, keepdims=True)
confusion_matrices.append(conf_matrix)
# Create subplots for each model
# Adjust width based on number of models (2.4 inches per model works well)
fig_width = num_models * 2.4
fig, axes = plt.subplots(1, num_models, figsize=(fig_width, 2.8), dpi=150)
if num_models == 1:
axes = [axes]
# Species abbreviations for axis labels
species_labels = ['Jag', 'Oce', 'M.L.', 'C.E.', 'Wat']
for model_idx, (ax, conf_matrix) in enumerate(zip(axes, confusion_matrices)):
# Apply square root scaling to make small values more visible
# This expands small values while still showing large values
sqrt_conf_matrix = np.sqrt(np.sqrt(np.sqrt(np.sqrt(conf_matrix))))
# Plot confusion matrix as heatmap with sqrt-scaled values
im = ax.imshow(sqrt_conf_matrix, cmap='Blues', aspect='auto')#, vmin=0, vmax=1)
# Add model name as title
model_info = MODEL_INFO[model_idx]
ax.set_title(f"{model_info['name']}", fontsize=10, pad=5)
# Set axis labels
if model_idx == 0:
ax.set_ylabel('True class', fontsize=9)
ax.set_xlabel('Predicted', fontsize=9)
# Set ticks with species abbreviations
ax.set_xticks(range(num_classes))
ax.set_yticks(range(num_classes))
ax.set_xticklabels(species_labels[:num_classes], fontsize=8)
ax.set_yticklabels(species_labels[:num_classes], fontsize=8)
plt.suptitle(f"CODA's Confusion Matrix Estimates (Iteration {iteration_count})", fontsize=12, y=0.98)
plt.tight_layout()
temp_fig = fig
plt.close(fig)
return temp_fig
def create_accuracy_bar_chart():
"""Create a bar chart showing true accuracy of each model (with muted colors)"""
global oracle, dataset
if oracle is None or dataset is None:
# Fallback for initial state
fig, ax = plt.subplots(figsize=(8, 2.8), dpi=150)
ax.text(0.5, 0.5, 'Start demo to see model accuracies',
ha='center', va='center', fontsize=12)
ax.axis('off')
plt.tight_layout()
temp_fig = fig
plt.close(fig)
return temp_fig
true_losses = oracle.true_losses(dataset.preds)
# Convert losses to accuracies (assuming loss is 1 - accuracy)
accuracies = (1 - true_losses).detach().cpu().numpy().flatten()
model_labels = [" "*(9 if info['name']=='LAION CLIP' else 4 if info['name']=='SigLIP2' else 6) + info['name'] for info in MODEL_INFO[:len(accuracies)]]
# Find the index of the highest accuracy
best_idx = np.argmax(accuracies)
fig, ax = plt.subplots(figsize=(8, 2.8), dpi=150)
# Create colors array - highlight the best model with dark reddish orange, others soft pink
colors = ['#F8481C' if i == best_idx else '#F8BBD0' for i in range(len(model_labels))]
bars = ax.bar(range(len(model_labels)), accuracies, color=colors, alpha=0.85)
# Add text above the highest bar
ax.text(best_idx, accuracies[best_idx] + 0.0025, 'True best model',
ha='center', va='bottom', fontsize=12, fontweight='bold')
ax.set_ylabel('True (oracle) \naccuracy of model', fontsize=12)
ax.set_title('True Model Accuracies', fontsize=12)
y_min = np.min(accuracies) - 0.025
y_max = np.max(accuracies) + 0.05
ax.set_ylim(y_min, y_max)
# Add accuracy values in the middle of the visible portion of each bar
for i, (bar, acc) in enumerate(zip(bars, accuracies)):
# Position text in the middle of the visible part of the bar
text_y = (y_min + acc) / 2
# Use black text for all bars
text_color = '#000000'
ax.text(i, text_y, f'{acc:.3f}',
ha='center', va='center', fontsize=10, fontweight='bold', color=text_color)
# Set x-axis labels and ticks
ax.set_xticks(range(len(model_labels)))
ax.set_xticklabels(model_labels, fontsize=12, ha='center')
# Add logos to x-axis
for i, model_info in enumerate(MODEL_INFO[:len(accuracies)]):
add_logo_to_x_axis(ax, i, model_info['logo'], model_info['name'])
plt.yticks(fontsize=12)
plt.tight_layout()
# Save the figure and close it to prevent memory leaks
temp_fig = fig
plt.close(fig)
return temp_fig
# Create the Gradio interface
with gr.Blocks(title="CODA: Wildlife Photo Classification Challenge",
theme=gr.themes.Base(),
css="""
.subtle-outline {
border: 1px solid var(--border-color-primary) !important;
background: var(--background-fill-secondary) !important;
border-radius: var(--radius-lg);
padding: 1rem;
}
.subtle-outline .flex {
background-color: var(--background-fill-secondary) !important;
}
/* Light blue background for model predictions panel */
.model-predictions-panel {
border: 1px solid #6B8CBF !important;
background: #D6E4F5 !important;
border-radius: var(--radius-lg);
padding: 0.3rem !important;
margin: 0.2rem 0 !important;
}
.model-predictions-panel .flex {
background-color: #D6E4F5 !important;
padding: 0 !important;
margin: 0 !important;
}
.model-predictions-panel * {
color: #1a1a1a !important;
}
/* Popup overlay styles */
.popup-overlay {
position: fixed;
top: 0;
left: 0;
width: 100%;
height: 100%;
background-color: rgba(0, 0, 0, 0.5);
z-index: 1000;
display: flex;
justify-content: center;
align-items: center;
}
.popup-overlay > div {
background: transparent !important;
border: none !important;
padding: 0 !important;
margin: 0 !important;
}
.popup-content {
background: var(--background-fill-primary) !important;
padding: 2rem !important;
border-radius: 1rem !important;
max-width: 850px;
width: 90%;
max-height: 80vh;
overflow-y: auto;
box-shadow: 0 10px 25px rgba(0, 0, 0, 0.3);
border: none !important;
margin: 0 !important;
color: var(--body-text-color) !important;
}
.popup-content > div {
background: var(--background-fill-primary) !important;
border: none !important;
padding: 0 !important;
margin: 0 !important;
overflow-y: visible !important;
max-height: none !important;
}
.popup-content h1,
.popup-content h2,
.popup-content h3,
.popup-content p,
.popup-content li {
color: var(--body-text-color) !important;
}
/* Ensure gradio column components don't interfere with scrolling */
.popup-content .gradio-column {
overflow-y: visible !important;
max-height: none !important;
}
/* Ensure images in popup are responsive */
.popup-content img {
max-width: 100% !important;
height: auto !important;
}
/* Center title */
.text-center {
text-align: center !important;
}
/* Right align text */
.text-right {
text-align: right !important;
}
/* Subtitle styling */
.subtitle {
text-align: center !important;
font-weight: 300 !important;
color: #666 !important;
margin-top: -0.5rem !important;
}
/* Question mark icon styling */
.panel-container {
position: relative;
}
.help-icon {
position: absolute;
top: 5px;
right: 5px;
width: 25px;
height: 25px;
background-color: #f8f9fa;
color: #6c757d;
border: 1px solid #dee2e6;
border-radius: 50%;
display: flex;
align-items: center;
justify-content: center;
cursor: pointer;
font-size: 13px;
font-weight: 600;
z-index: 10;
transition: all 0.2s ease;
box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1);
}
.help-icon:hover {
background-color: #e9ecef;
color: #495057;
border-color: #adb5bd;
box-shadow: 0 2px 6px rgba(0, 0, 0, 0.15);
}
/* Help popup styles */
.help-popup-overlay {
position: fixed;
top: 0;
left: 0;
width: 100%;
height: 100%;
background-color: rgba(0, 0, 0, 0.5);
z-index: 1001;
display: flex;
justify-content: center;
align-items: center;
}
.help-popup-overlay > div {
background: transparent !important;
border: none !important;
padding: 0 !important;
margin: 0 !important;
}
.help-popup-content {
background: var(--background-fill-primary) !important;
padding: 1.5rem !important;
border-radius: 0.5rem !important;
max-width: 600px;
width: 90%;
box-shadow: 0 10px 25px rgba(0, 0, 0, 0.3);
border: none !important;
margin: 0 !important;
color: var(--body-text-color) !important;
}
.help-popup-content > div {
background: var(--background-fill-primary) !important;
border: none !important;
padding: 0 !important;
margin: 0 !important;
}
.help-popup-content h1,
.help-popup-content h2,
.help-popup-content h3,
.help-popup-content p,
.help-popup-content li {
color: var(--body-text-color) !important;
}
/* Inline help button */
.inline-help-btn {
display: inline-block;
width: 20px;
height: 20px;
background-color: #f8f9fa;
color: #6c757d;
border: 1px solid #dee2e6;
border-radius: 50%;
text-align: center;
line-height: 18px;
cursor: pointer;
font-size: 11px;
font-weight: 600;
margin-left: 8px;
vertical-align: middle;
transition: all 0.2s ease;
box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1);
}
.inline-help-btn:hover {
background-color: #e9ecef;
color: #495057;
border-color: #adb5bd;
box-shadow: 0 2px 6px rgba(0, 0, 0, 0.15);
}
#hidden-selection-help-btn {
display: none;
}
/* Reduce spacing around status text */
.status-text {
margin: 0 !important;
padding: 0 !important;
}
.status-text > div {
margin: 0 !important;
padding: 0 !important;
}
/* Compact model predictions panel */
.compact-predictions {
line-height: 1.1 !important;
margin: 0 !important;
padding: 0.1rem !important;
}
.compact-predictions p {
margin: 0.05rem 0 !important;
}
.compact-predictions h3 {
margin: 0 0 0.1rem 0 !important;
}
/* Target the subtle-outline group that contains predictions */
.subtle-outline {
padding: 0.3rem !important;
margin: 0.2rem 0 !important;
}
/* Target the column inside the outline */
.subtle-outline .flex {
padding: 0 !important;
margin: 0 !important;
}
/* Ensure text in predictions panel is visible in dark mode */
.subtle-outline * {
color: var(--body-text-color) !important;
}
""",
delete_cache=(3600,3600) # once per hour - clear old javascript
) as demo:
# Main page title
gr.Markdown("# CODA: Consensus-Driven Active Model Selection", elem_classes="text-center")
gr.Markdown("*Figure out which model is best by actively annotating data. See <a href='https://www.arxiv.org/abs/2507.23771'>the paper</a> for more details!*", elem_classes="text-center")
# Add buttons row
with gr.Row():
view_guide_button = gr.Button("π View Species Guide", variant="secondary", size="lg")
start_over_button = gr.Button("Start Over", variant="secondary", size="lg")
# Popup component
with gr.Group(visible=True, elem_classes="popup-overlay") as popup_overlay:
with gr.Group(elem_classes="popup-content"):
# Main intro content
intro_content = gr.Markdown("""
# CODA: Consensus-Driven Active Model Selection
## Wildlife Photo Classification Challenge
You are a wildlife ecologist who has just collected a season's worth of imagery from cameras
deployed in Africa and Central and South America. You want to know what species occur in this imagery,
and you hope to use a pre-trained classifier to give you answers quickly.
But which one should you use?
Instead of labeling a large validation set, our new method, **CODA**, enables you to perform **active model selection**.
That is, CODA uses predictions from candidate models to guide the labeling process, querying you (a species identification expert)
for labels on a select few images that will most efficiently differentiate between your candidate machine learning models.
This demo lets you try CODA yourself! First, **become a species identification expert by reading our classification guide**
so that you will be equipped to provide ground truth labels. Then, watch as CODA narrows down the best model over time
as you provide labels for the query images. You will see that with your input CODA is able to identify the best model candidate
with as few as ten (correctly) labeled images.
""")
# Species guide content (initially hidden)
with gr.Column(visible=False) as species_guide_content:
create_species_guide_content()
# Add spacing before buttons
gr.HTML("<div style='margin-top: 0.1em;'></div>")
with gr.Row():
back_button = gr.Button("β Back to Intro", variant="secondary", size="lg", visible=False)
guide_button = gr.Button("View Species Classification Guide", variant="primary", size="lg")
popup_start_button = gr.Button("Start Demo", variant="secondary", size="lg")
# Help popups for panels
with gr.Group(visible=False, elem_classes="help-popup-overlay") as prob_help_popup:
with gr.Group(elem_classes="help-popup-content"):
gr.Markdown("""
## CODA Model Selection Probabilities
This chart shows CODA's current confidence in each candidate classifier being the best performer.
**How to read this chart:**
- Each bar represents one of the candidate machine learning classifiers
- The height of each bar shows the probability (0-100%) that this model is the best, according to CODA
- The orange bar indicates CODA's current best guess
- As you provide more labels, CODA updates these probabilities
**What you'll see:**
- CODA initializes these probabilities based on each classifier's agreement with the consensus votes of *all* classifiers,
providing informative priors
- As you label images, some models will gain confidence while others lose it
- The goal is for one model to clearly emerge as the winner
More details can be found in [the paper](https://www.arxiv.org/abs/2507.23771)!
**What models are these?**
For this demo, we selected 5 zero-shot classifiers that would be reasonable choices for someone who
wanted to classify wildlife imagery. The models are: facebook/PE-Core-L14-336,
google/siglip2-so400m-patch16-naflex, openai/clip-vit-large-patch14, imageomics/bioclip-2, and
laion/CLIP-ViT-L-14-laion2B-s32B-b82K. Our goal is not to make any general claims about the performance
of these models but rather to provide a realistic set of candidates for demonstrating CODA.
""")
gr.HTML("<div style='margin-top: 0.1em;'></div>")
prob_help_close = gr.Button("Close", variant="secondary")
with gr.Group(visible=False, elem_classes="help-popup-overlay") as acc_help_popup:
with gr.Group(elem_classes="help-popup-content"):
gr.Markdown("""
## True Model Accuracies
This chart shows the actual performance of each model on the complete dataset (only possible with oracle knowledge).
**How to read this chart:**
- Each bar represents the true accuracy of one model
- The red bar shows the actual best-performing model
- This information is hidden from CODA during the selection process
- You can compare this with CODA's estimates to see how well it's doing
**Why this matters:**
- This represents the "ground truth" that CODA is trying to discover
- In real scenarios, you wouldn't know these true accuracies beforehand
- The demo shows these to illustrate how CODA's estimates align with reality
""")
acc_help_close = gr.Button("Close", variant="secondary")
with gr.Group(visible=False, elem_classes="help-popup-overlay") as selection_help_popup:
with gr.Group(elem_classes="help-popup-content"):
gr.Markdown("""
## How CODA selects images for labeling
CODA selects images that best differentiate top-performing classifiers from each other. It
does this by constructing a probabilistic model of which classifier is best (see
the plot at the bottom-left). Each iteration, CODA selects an image to be labeled
based on how much a label for that image is expected to affect the probabilistic model.
Intuitively, CODA will select images where the top classifiers disagree, since knowing the ground truth for these images will provide
the most information about which classifier is best overall.
More details can be found in [the paper](https://www.arxiv.org/abs/2507.23771)!
**What data is this?**
We selected a subset of 5 species from the iWildcam dataset, and subsampled a dataset of ~500 images for this demo.
Each refresh will generate a slightly different subset, leading to slightly different model selection
performance.
""")
gr.HTML("<div style='margin-top: 0.1em;'></div>")
selection_help_close = gr.Button("Close", variant="secondary")
# Species guide popup during demo
with gr.Group(visible=False, elem_classes="popup-overlay") as species_guide_popup:
with gr.Group(elem_classes="popup-content"):
create_species_guide_content()
# Add spacing before button
gr.HTML("<div style='margin-top: 0.1em;'></div>")
species_guide_close = gr.Button("Go back to demo", variant="primary", size="lg")
# Status display with help button and result on same row
selection_help_button = gr.Button("", visible=False, elem_id="hidden-selection-help-btn")
with gr.Row():
with gr.Column(scale=3):
status_with_help = gr.HTML("", visible=True, elem_classes="status-text")
with gr.Column(scale=2):
result_display = gr.Markdown("", visible=True, elem_classes="text-right")
with gr.Row():
image_display = gr.Image(
label="Identify this animal:",
value=None,
height=400,
width=550,
elem_id="main-image-display"
)
gr.Markdown("### What species is this?")
with gr.Row():
# Create buttons for each species
species_buttons = []
for species_name in SPECIES_MAP.values():
btn = gr.Button(species_name, variant="primary", size="lg")
species_buttons.append(btn)
# Add "I don't know" button
idk_button = gr.Button("I don't know", variant="primary", size="lg")
# Model predictions panel (full width, single line)
with gr.Group(elem_classes="model-predictions-panel"):
with gr.Column(elem_classes="flex items-center justify-center h-full"):
model_predictions_display = gr.Markdown(
"### Model Predictions\n\n*Start the demo to see model votes!*",
show_label=False,
elem_classes="text-center compact-predictions"
)
# Two panels with bar charts
with gr.Row():
with gr.Column(scale=1):
with gr.Group(elem_classes="panel-container"):
prob_help_button = gr.Button("?", elem_classes="help-icon", size="sm")
prob_plot = gr.Plot(
value=None,
show_label=False
)
with gr.Column(scale=1):
# with gr.Group(elem_classes="panel-container"):
# acc_help_button = gr.Button("?", elem_classes="help-icon", size="sm")
# with gr.Row(elem_classes="flex-grow") as accuracy_title_row:
# gr.Markdown("""
# ## True Model Accuracies
#
# Click below to view the true model accuracies.
#
# Note you wouldn't be able to do this in the real model selection setting!
#
# """,
# elem_classes="text-center compact-predictions flex-grow")
# # Centered reveal button (initially visible)
# with gr.Group(visible=True) as accuracy_hidden_group:
# with gr.Column(elem_classes="flex items-center justify-center h-full"):
# reveal_accuracy_button = gr.Button(
# "Reveal model accuracies",
# variant="primary"
# )
# # Accuracy plot (initially hidden)
# accuracy_plot = gr.Plot(
# value=create_accuracy_chart(),
# show_label=False,
# visible=False
# )
accuracy_plot = gr.Plot(
value=create_accuracy_chart(),
show_label=False,
visible=False
)
with gr.Group(visible=True, elem_classes="subtle-outline accuracy-hidden-panel") as hidden_group:
with gr.Column(elem_classes="flex items-center justify-center h-full"):
# example of how to add spacing:
# gr.HTML("<div style='margin-top: 2.9em;'></div>")
hidden_text0 = gr.Markdown("""
## True model performance is hidden
""",
elem_classes="text-center",)
gr.HTML("<div style='margin-top: 0.25em;'></div>")
hidden_text1 = gr.Markdown("""
In this problem setting the true model performance is assumed to be unknown (that is why we want to perform model selection!)
However, for this demo, we have computed the actual accuracies of each model in order to evaluate CODA's performance.
""",
elem_classes="text-center",
)
gr.HTML("<div style='margin-top: 0.25em;'></div>")
# with gr.Row():
# with gr.Column(scale=2):
# pass
# with gr.Column(scale=1, min_width=100):
# reveal_accuracy_button = gr.Button(
# "π Reveal",
# variant="secondary",
# size="lg"
# )
# with gr.Column(scale=2):
# pass
with gr.Row():
reveal_accuracy_button = gr.Button(
"π Reveal True Model Accuracies",
variant="secondary",
size="lg"
)
# example of how to add spacing:
# gr.HTML("<div style='margin-top: 2.9em;'></div>")
# Add debug delete button (only visible in debug mode)
if DEBUG_MODE:
delete_button = gr.Button("ποΈ Delete Current Image", variant="stop", size="lg")
# Set up button interactions
def start_demo():
global iteration_count, coda_selector, dataset, oracle, image_filenames
# Reset the demo state
iteration_count = 0
# Keep resampling until we get a subset where the initial best model (by CODA) is NOT the true best model
while True:
# Subsample dataset for this user
subsampled_indices = []
for class_idx in sorted(full_class_to_indices.keys()):
indices = full_class_to_indices[class_idx]
sampled = np.random.choice(indices, size=min_class_size, replace=False)
subsampled_indices.extend(sampled.tolist())
# Sort indices to maintain order
subsampled_indices.sort()
# Create subsampled dataset for this user
subsampled_preds = full_preds[:, subsampled_indices, :]
subsampled_labels = full_labels[subsampled_indices]
image_filenames = [full_image_filenames[idx] for idx in subsampled_indices]
# Create Dataset object with subsampled data
dataset = Dataset.__new__(Dataset)
dataset.preds = subsampled_preds
dataset.labels = subsampled_labels
dataset.device = device
# Create oracle and CODA selector for this user
oracle = Oracle(dataset, loss_fn=loss_fn)
coda_selector = CODA(dataset,
learning_rate=DEMO_LEARNING_RATE,
alpha=DEMO_ALPHA)
# Check which model is initially best according to CODA
probs_tensor = coda_selector.get_pbest()
probabilities = probs_tensor.detach().cpu().numpy().flatten()
coda_best_idx = np.argmax(probabilities)
# Get true best model according to oracle
true_losses = oracle.true_losses(dataset.preds)
true_accuracies = (1 - true_losses).detach().cpu().numpy().flatten()
true_best_idx = np.argmax(true_accuracies)
# Accept this subset if CODA's initial best is NOT the true best
if coda_best_idx != true_best_idx:
break
# Otherwise, loop and resample
image, status, predictions = get_next_coda_image()
prob_plot = create_probability_chart()
acc_plot = create_accuracy_chart()
# Create HTML with inline help button
status_html = f'{status} <span class="inline-help-btn" title="What is this?">?</span>'
return image, status_html, predictions, prob_plot, acc_plot, gr.update(visible=False), "", gr.update(visible=True)
def start_over():
global iteration_count, coda_selector, dataset, oracle, image_filenames
# Reset the demo state
iteration_count = 0
# Keep resampling until we get a subset where the initial best model (by CODA) is NOT the true best model
while True:
# Subsample dataset for this user (new random subsample)
subsampled_indices = []
for class_idx in sorted(full_class_to_indices.keys()):
indices = full_class_to_indices[class_idx]
sampled = np.random.choice(indices, size=min_class_size, replace=False)
subsampled_indices.extend(sampled.tolist())
# Sort indices to maintain order
subsampled_indices.sort()
# Create subsampled dataset for this user
subsampled_preds = full_preds[:, subsampled_indices, :]
subsampled_labels = full_labels[subsampled_indices]
image_filenames = [full_image_filenames[idx] for idx in subsampled_indices]
# Create Dataset object with subsampled data
dataset = Dataset.__new__(Dataset)
dataset.preds = subsampled_preds
dataset.labels = subsampled_labels
dataset.device = device
# Create oracle and CODA selector for this user
oracle = Oracle(dataset, loss_fn=loss_fn)
coda_selector = CODA(dataset,
learning_rate=DEMO_LEARNING_RATE,
alpha=DEMO_ALPHA)
# Check which model is initially best according to CODA
probs_tensor = coda_selector.get_pbest()
probabilities = probs_tensor.detach().cpu().numpy().flatten()
coda_best_idx = np.argmax(probabilities)
# Get true best model according to oracle
true_losses = oracle.true_losses(dataset.preds)
true_accuracies = (1 - true_losses).detach().cpu().numpy().flatten()
true_best_idx = np.argmax(true_accuracies)
# Accept this subset if CODA's initial best is NOT the true best
if coda_best_idx != true_best_idx:
break
# Otherwise, loop and resample
# Reset all displays
prob_plot = create_probability_chart()
acc_plot = create_accuracy_chart()
return None, "Demo reset. Click 'Start CODA Demo' to begin.", "### Model Predictions\n\n*Start the demo to see model votes!*", prob_plot, acc_plot, "", gr.update(visible=True), gr.update(visible=False)
def show_species_guide():
# Show species guide, hide intro content, show back button, hide guide button
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(visible=False)
def show_intro():
# Show intro content, hide species guide, hide back button, show guide button
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
def show_prob_help():
return gr.update(visible=True)
def hide_prob_help():
return gr.update(visible=False)
def show_acc_help():
return gr.update(visible=True)
def hide_acc_help():
return gr.update(visible=False)
def show_selection_help():
return gr.update(visible=True)
def hide_selection_help():
return gr.update(visible=False)
def show_species_guide_popup():
return gr.update(visible=True)
def hide_species_guide_popup():
return gr.update(visible=False)
def reveal_accuracies():
"""Reveal accuracy plot and hide the hidden group"""
return gr.update(visible=True), gr.update(visible=False)
popup_start_button.click(
fn=start_demo,
outputs=[image_display, status_with_help, model_predictions_display, prob_plot, accuracy_plot, popup_overlay, result_display, selection_help_button],
js="""
() => {
console.log('=== Panel Height Matching (Dynamic) ===');
function matchPanelHeights() {
const panels = document.querySelectorAll('.panel-container');
console.log('Found .panel-container elements:', panels.length);
const leftPanel = panels[0]; // prob_plot panel
const rightPanel = document.querySelector('.accuracy-hidden-panel'); // hidden_group panel
console.log('Left panel (prob):', leftPanel);
console.log('Right panel (hidden):', rightPanel);
if (leftPanel && rightPanel) {
const leftHeight = leftPanel.offsetHeight;
const rightHeight = rightPanel.offsetHeight;
const diff = leftHeight - rightHeight;
console.log('Left panel height:', leftHeight);
console.log('Right panel height:', rightHeight);
console.log('Height difference:', diff);
if (diff > 0) {
console.log('Setting right panel min-height to:', leftHeight + 'px');
rightPanel.style.minHeight = leftHeight + 'px';
rightPanel.style.display = 'flex';
rightPanel.style.flexDirection = 'column';
rightPanel.style.justifyContent = 'center';
console.log('Applied min-height and flex centering');
return true; // Success
} else {
console.log('No height adjustment needed (diff <= 0)');
return true; // Success
}
} else {
console.log('Panels not ready yet');
return false; // Not ready
}
}
// Check every 50ms for 3 seconds to catch multiple height changes
let attempts = 0;
const maxAttempts = 60; // 60 * 50ms = 3 seconds to catch both height changes
const checkInterval = setInterval(() => {
attempts++;
console.log('Attempt', attempts, 'to match heights');
matchPanelHeights(); // Always try, don't stop early
if (attempts >= maxAttempts) {
console.log('Finished checking after 3 seconds');
clearInterval(checkInterval);
}
}, 50); // Check every 50ms
}
"""
)
start_over_button.click(
fn=start_over,
outputs=[image_display, status_with_help, model_predictions_display, prob_plot, accuracy_plot, result_display, popup_overlay, selection_help_button],
js="""
() => {
console.log('=== Panel Height Matching (Dynamic - Start Over) ===');
function matchPanelHeights() {
const panels = document.querySelectorAll('.panel-container');
console.log('Found .panel-container elements:', panels.length);
const leftPanel = panels[0]; // prob_plot panel
const rightPanel = document.querySelector('.accuracy-hidden-panel'); // hidden_group panel
console.log('Left panel (prob):', leftPanel);
console.log('Right panel (hidden):', rightPanel);
if (leftPanel && rightPanel) {
const leftHeight = leftPanel.offsetHeight;
const rightHeight = rightPanel.offsetHeight;
const diff = leftHeight - rightHeight;
console.log('Left panel height:', leftHeight);
console.log('Right panel height:', rightHeight);
console.log('Height difference:', diff);
if (diff > 0) {
console.log('Setting right panel min-height to:', leftHeight + 'px');
rightPanel.style.minHeight = leftHeight + 'px';
rightPanel.style.display = 'flex';
rightPanel.style.flexDirection = 'column';
rightPanel.style.justifyContent = 'center';
console.log('Applied min-height and flex centering');
return true; // Success
} else {
console.log('No height adjustment needed (diff <= 0)');
return true; // Success
}
} else {
console.log('Panels not ready yet');
return false; // Not ready
}
}
// Check every 50ms for 3 seconds to catch multiple height changes
let attempts = 0;
const maxAttempts = 60; // 60 * 50ms = 3 seconds to catch both height changes
const checkInterval = setInterval(() => {
attempts++;
console.log('Attempt', attempts, 'to match heights');
matchPanelHeights(); // Always try, don't stop early
if (attempts >= maxAttempts) {
console.log('Finished checking after 3 seconds');
clearInterval(checkInterval);
}
}, 50); // Check every 50ms
}
"""
)
guide_button.click(
fn=show_species_guide,
outputs=[intro_content, species_guide_content, back_button, guide_button]
)
back_button.click(
fn=show_intro,
outputs=[intro_content, species_guide_content, back_button, guide_button]
)
# Help popup handlers
prob_help_button.click(
fn=show_prob_help,
outputs=[prob_help_popup]
)
prob_help_close.click(
fn=hide_prob_help,
outputs=[prob_help_popup]
)
# acc_help_button.click(
# fn=show_acc_help,
# outputs=[acc_help_popup]
# )
acc_help_close.click(
fn=hide_acc_help,
outputs=[acc_help_popup]
)
selection_help_button.click(
fn=show_selection_help,
outputs=[selection_help_popup]
)
selection_help_close.click(
fn=hide_selection_help,
outputs=[selection_help_popup]
)
# Reveal accuracy button handler
reveal_accuracy_button.click(
fn=reveal_accuracies,
outputs=[accuracy_plot, hidden_group]
)
# Species guide popup handlers
view_guide_button.click(
fn=show_species_guide_popup,
outputs=[species_guide_popup]
)
species_guide_close.click(
fn=hide_species_guide_popup,
outputs=[species_guide_popup]
)
for btn in species_buttons:
btn.click(
fn=check_answer,
inputs=[gr.State(btn.value)],
outputs=[result_display, status_with_help, image_display, model_predictions_display, prob_plot, accuracy_plot]
)
idk_button.click(
fn=check_answer,
inputs=[gr.State("I don't know")],
outputs=[result_display, status_with_help, image_display, model_predictions_display, prob_plot, accuracy_plot]
)
# Wire up delete button in debug mode
if DEBUG_MODE:
delete_button.click(
fn=delete_current_image,
outputs=[result_display, image_display, model_predictions_display, prob_plot, accuracy_plot, status_with_help]
)
# Add JavaScript to handle inline help button clicks and dynamic image sizing
demo.load(
lambda: None,
outputs=[],
js="""
() => {
// Handle inline help button clicks
setTimeout(() => {
document.addEventListener('click', function(e) {
if (e.target && e.target.classList.contains('inline-help-btn')) {
e.preventDefault();
e.stopPropagation();
const hiddenBtn = document.getElementById('hidden-selection-help-btn');
if (hiddenBtn) {
hiddenBtn.click();
}
}
});
}, 100);
// Dynamic image sizing (NEW VERSION)
console.log('=== IMAGE SIZING V2 LOADED ===');
function adjustImageSize() {
const imageContainer = document.getElementById('main-image-display');
if (!imageContainer) {
console.log('[V2] Image container not found');
return false;
}
const viewportHeight = window.innerHeight;
const docHeight = document.documentElement.scrollHeight;
const currentImageHeight = imageContainer.offsetHeight;
// Calculate how much we're overflowing
const overflow = docHeight - viewportHeight;
// If we're not overflowing, increase image size
// If we are overflowing, decrease image size by the overflow amount
const adjustment = -overflow - 30; // Keep padding below bottom button
const targetHeight = currentImageHeight + adjustment;
console.log('[V2] viewport:', viewportHeight, 'docHeight:', docHeight, 'currentImg:', currentImageHeight, 'overflow:', overflow, 'target:', targetHeight);
// Only apply if reasonable
if (targetHeight > 300 && targetHeight < viewportHeight - 100) {
imageContainer.style.height = targetHeight + 'px';
imageContainer.style.maxHeight = targetHeight + 'px';
console.log('[V2] Set image height to:', targetHeight + 'px');
return true;
}
return false;
}
// Run after initial load
setTimeout(adjustImageSize, 500);
// Run periodically for first 5 seconds to catch layout changes
let attempts = 0;
const interval = setInterval(() => {
attempts++;
adjustImageSize();
if (attempts >= 50) { // 50 * 100ms = 5 seconds
clearInterval(interval);
}
}, 100);
// Re-adjust on window resize
window.addEventListener('resize', adjustImageSize);
}
""",
)
if __name__ == "__main__":
demo.launch(
# share=True,
# server_port=7861,
allowed_paths=["/"],
)
|