justinkay commited on
Commit
f6adf18
·
1 Parent(s): e7063f6

Change learning rate, small text changes

Browse files
Files changed (1) hide show
  1. app.py +8 -3
app.py CHANGED
@@ -58,6 +58,8 @@ MODEL_INFO = [
58
  {"org": "Imageomics", "name": "BioCLIP", "logo": "logos/imageomics.png"}
59
  ]
60
 
 
 
61
  # load image metadata
62
  images_data = []
63
  for annotation in tqdm(data['annotations'], desc='Loading annotations'):
@@ -124,7 +126,7 @@ def get_model_predictions(chosen_idx):
124
  confidence = model_scores[predicted_class_idx]
125
 
126
  model_info = MODEL_INFO[model_idx]
127
- predictions_list.append(f"**{model_info['org']} {model_info['name']}:** {predicted_class_name} *({confidence:.3f})*")
128
 
129
  predictions_text = "### Model Predictions\n\n" + " | ".join(predictions_list)
130
 
@@ -596,6 +598,7 @@ with gr.Blocks(title="CODA: Wildlife Photo Classification Challenge",
596
  so that you will be equipped to provide ground truth labels. Then, watch as CODA narrows down the best model over time
597
  as you provide labels for the query images. You will see that with your input CODA is able to identify the best model candidate
598
  with as few as ten (correctly) labeled images.
 
599
  """)
600
 
601
  # Species guide content (initially hidden)
@@ -806,7 +809,8 @@ with gr.Blocks(title="CODA: Wildlife Photo Classification Challenge",
806
 
807
  # Create oracle and CODA selector for this user
808
  oracle = Oracle(dataset, loss_fn=loss_fn)
809
- coda_selector = CODA(dataset)
 
810
 
811
  image, status, predictions = get_next_coda_image()
812
  prob_plot = create_probability_chart()
@@ -844,7 +848,8 @@ with gr.Blocks(title="CODA: Wildlife Photo Classification Challenge",
844
 
845
  # Create oracle and CODA selector for this user
846
  oracle = Oracle(dataset, loss_fn=loss_fn)
847
- coda_selector = CODA(dataset)
 
848
 
849
  # Reset all displays
850
  prob_plot = create_probability_chart()
 
58
  {"org": "Imageomics", "name": "BioCLIP", "logo": "logos/imageomics.png"}
59
  ]
60
 
61
+ DEMO_LEARNING_RATE = 0.05 # don't use default; use something more fun
62
+
63
  # load image metadata
64
  images_data = []
65
  for annotation in tqdm(data['annotations'], desc='Loading annotations'):
 
126
  confidence = model_scores[predicted_class_idx]
127
 
128
  model_info = MODEL_INFO[model_idx]
129
+ predictions_list.append(f"**{model_info['name']}:** {predicted_class_name} *({confidence:.3f})*")
130
 
131
  predictions_text = "### Model Predictions\n\n" + " | ".join(predictions_list)
132
 
 
598
  so that you will be equipped to provide ground truth labels. Then, watch as CODA narrows down the best model over time
599
  as you provide labels for the query images. You will see that with your input CODA is able to identify the best model candidate
600
  with as few as ten (correctly) labeled images.
601
+
602
  """)
603
 
604
  # Species guide content (initially hidden)
 
809
 
810
  # Create oracle and CODA selector for this user
811
  oracle = Oracle(dataset, loss_fn=loss_fn)
812
+ coda_selector = CODA(dataset,
813
+ learning_rate=DEMO_LEARNING_RATE)
814
 
815
  image, status, predictions = get_next_coda_image()
816
  prob_plot = create_probability_chart()
 
848
 
849
  # Create oracle and CODA selector for this user
850
  oracle = Oracle(dataset, loss_fn=loss_fn)
851
+ coda_selector = CODA(dataset,
852
+ learning_rate=DEMO_LEARNING_RATE)
853
 
854
  # Reset all displays
855
  prob_plot = create_probability_chart()