justinkay
commited on
Commit
·
3aaf8da
1
Parent(s):
47b7c6b
Dynamic subsampling
Browse files
app.py
CHANGED
|
@@ -63,9 +63,45 @@ print(f"Loaded {len(images_data)} images for the quiz")
|
|
| 63 |
with open('images.txt', 'r') as f:
|
| 64 |
image_filenames = [line.strip() for line in f.readlines() if line.strip()]
|
| 65 |
|
| 66 |
-
# Initialize CODA
|
| 67 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
loss_fn = LOSS_FNS['acc']
|
| 70 |
oracle = Oracle(dataset, loss_fn=loss_fn)
|
| 71 |
|
|
|
|
| 63 |
with open('images.txt', 'r') as f:
|
| 64 |
image_filenames = [line.strip() for line in f.readlines() if line.strip()]
|
| 65 |
|
| 66 |
+
# Initialize CODA with subsampled dataset
|
| 67 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 68 |
+
|
| 69 |
+
# Load full dataset
|
| 70 |
+
full_preds = torch.load("iwildcam_demo.pt").to(device)
|
| 71 |
+
full_labels = torch.load("iwildcam_demo_labels.pt").to(device)
|
| 72 |
+
|
| 73 |
+
# Subsample to balance classes
|
| 74 |
+
from collections import defaultdict
|
| 75 |
+
class_to_indices = defaultdict(list)
|
| 76 |
+
for idx, label in enumerate(full_labels):
|
| 77 |
+
class_idx = label.item()
|
| 78 |
+
class_to_indices[class_idx].append(idx)
|
| 79 |
+
|
| 80 |
+
# Find minimum class size
|
| 81 |
+
min_class_size = min(len(indices) for indices in class_to_indices.values())
|
| 82 |
+
print(f"Subsampling to {min_class_size} images per class (total: {min_class_size * len(class_to_indices)} images)")
|
| 83 |
+
|
| 84 |
+
# Randomly subsample each class
|
| 85 |
+
subsampled_indices = []
|
| 86 |
+
for class_idx in sorted(class_to_indices.keys()):
|
| 87 |
+
indices = class_to_indices[class_idx]
|
| 88 |
+
sampled = np.random.choice(indices, size=min_class_size, replace=False)
|
| 89 |
+
subsampled_indices.extend(sampled.tolist())
|
| 90 |
+
|
| 91 |
+
# Sort indices to maintain order
|
| 92 |
+
subsampled_indices.sort()
|
| 93 |
+
|
| 94 |
+
# Create subsampled dataset
|
| 95 |
+
subsampled_preds = full_preds[:, subsampled_indices, :]
|
| 96 |
+
subsampled_labels = full_labels[subsampled_indices]
|
| 97 |
+
image_filenames = [image_filenames[idx] for idx in subsampled_indices]
|
| 98 |
+
|
| 99 |
+
# Create Dataset object with subsampled data
|
| 100 |
+
dataset = Dataset.__new__(Dataset)
|
| 101 |
+
dataset.preds = subsampled_preds
|
| 102 |
+
dataset.labels = subsampled_labels
|
| 103 |
+
dataset.device = device
|
| 104 |
+
|
| 105 |
loss_fn = LOSS_FNS['acc']
|
| 106 |
oracle = Oracle(dataset, loss_fn=loss_fn)
|
| 107 |
|