Spaces:
Sleeping
Sleeping
| title: BitNet Text Summarizer | |
| emoji: 📝 | |
| colorFrom: purple | |
| colorTo: indigo | |
| sdk: docker | |
| app_port: 8501 | |
| pinned: false | |
| short_description: Streamlit summarizer using microsoft/bitnet-b1.58-2B-4T | |
| # 📝 BitNet Text Summarizer (Streamlit) | |
| An open‑source text summarizer running on **microsoft/bitnet-b1.58-2B-4T** with a map‑reduce strategy for long inputs. Deployed on **Hugging Face Spaces** using **Docker + Streamlit**. | |
| ## Features | |
| - **BitNet (local)** inference inside the Space (GPU recommended) | |
| - **HF Inference API fallback** (optional) if you provide `HF_TOKEN` | |
| - **Map‑Reduce** summarization for long documents | |
| - Adjustable generation parameters (temperature, top_p, token budgets) | |
| ## Quickstart | |
| 1. Create/Duplicate a Space with **SDK: Docker**. | |
| 2. Add files from this portfolio: `Dockerfile`, `requirements.txt`, `README.md`, and `src/` folder. | |
| 3. In **Settings → Hardware**, pick a **GPU** for faster startup (CPU works but is slower). | |
| 4. (Optional) Add a repo secret `HF_TOKEN` to enable the fallback engine. | |
| 5. Open the app, paste text, and click **Summarize**. | |
| ## Local Dev (optional) | |
| ```bash | |
| python -m venv .venv && source .venv/bin/activate # Windows: .venv\Scripts\activate | |
| pip install -r requirements.txt | |
| streamlit run src/streamlit_app.py |