Spaces:
Sleeping
Sleeping
File size: 1,279 Bytes
9ac6d5d 07620a8 d325832 f873160 5225df0 f873160 d325832 f873160 5225df0 d325832 5225df0 d325832 5225df0 d325832 5225df0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
---
title: BitNet Text Summarizer
emoji: 📝
colorFrom: purple
colorTo: indigo
sdk: docker
app_port: 8501
pinned: false
short_description: Streamlit summarizer using microsoft/bitnet-b1.58-2B-4T
---
# 📝 BitNet Text Summarizer (Streamlit)
An open‑source text summarizer running on **microsoft/bitnet-b1.58-2B-4T** with a map‑reduce strategy for long inputs. Deployed on **Hugging Face Spaces** using **Docker + Streamlit**.
## Features
- **BitNet (local)** inference inside the Space (GPU recommended)
- **HF Inference API fallback** (optional) if you provide `HF_TOKEN`
- **Map‑Reduce** summarization for long documents
- Adjustable generation parameters (temperature, top_p, token budgets)
## Quickstart
1. Create/Duplicate a Space with **SDK: Docker**.
2. Add files from this portfolio: `Dockerfile`, `requirements.txt`, `README.md`, and `src/` folder.
3. In **Settings → Hardware**, pick a **GPU** for faster startup (CPU works but is slower).
4. (Optional) Add a repo secret `HF_TOKEN` to enable the fallback engine.
5. Open the app, paste text, and click **Summarize**.
## Local Dev (optional)
```bash
python -m venv .venv && source .venv/bin/activate # Windows: .venv\Scripts\activate
pip install -r requirements.txt
streamlit run src/streamlit_app.py |