Spaces:
Build error
Build error
| import torch, gradio as gr | |
| from lex_rank import LexRank | |
| from lex_rank_text2vec_v1 import LexRankText2VecV1 | |
| from lex_rank_L12 import LexRankL12 | |
| from sentence_transformers import SentenceTransformer, util | |
| from ask_glm_4_help import GlmHelper | |
| # ---===--- instances ---===--- | |
| embedder = SentenceTransformer('paraphrase-multilingual-mpnet-base-v2') | |
| lex = LexRank() | |
| lex_distiluse_v1 = LexRankText2VecV1() | |
| lex_l12 = LexRankL12() | |
| glm_helper = GlmHelper() | |
| # 摘要方法1 | |
| def extract_handler(content, siblings, num): | |
| if not siblings: | |
| siblings = 0 | |
| if not num: | |
| num = 10 | |
| siblings = int(siblings) | |
| num = int(num) | |
| glm_summarized_content = GlmHelper.clean_raw_content(content) | |
| sentences = lex.find_central(glm_summarized_content, siblings=siblings, num=num) | |
| output = f""">>>>>经过大模型清洗之后的文章为:\n{glm_summarized_content}\n\t>>>>>摘要为:\n""" | |
| for index, sentence in enumerate(sentences): | |
| output += f"{index}: {sentence}\n" | |
| return output | |
| # 摘要方法2 | |
| def extract_handler_distiluse_v1(content, siblings, num): | |
| if not siblings: | |
| siblings = 0 | |
| if not num: | |
| num = 10 | |
| siblings = int(siblings) | |
| num = int(num) | |
| glm_summarized_content = GlmHelper.clean_raw_content(content) | |
| sentences = lex.find_central(glm_summarized_content, siblings=siblings, num=num) | |
| output = f""">>>>>经过大模型清洗之后的文章为:\n{glm_summarized_content}\n\t>>>>>摘要为:\n""" | |
| for index, sentence in enumerate(sentences): | |
| output += f"{index}: {sentence}\n" | |
| return output | |
| # 摘要方法3 | |
| def extract_handler_l12(content, siblings, num): | |
| if not siblings: | |
| siblings = 0 | |
| if not num: | |
| num = 10 | |
| siblings = int(siblings) | |
| num = int(num) | |
| glm_summarized_content = GlmHelper.clean_raw_content(content) | |
| sentences = lex.find_central(glm_summarized_content, siblings=siblings, num=num) | |
| output = f""">>>>>经过大模型清洗之后的文章为:\n{glm_summarized_content}\n\t>>>>>摘要为:\n""" | |
| for index, sentence in enumerate(sentences): | |
| output += f"{index}: {sentence}\n" | |
| return output | |
| # 相似度检测方法 | |
| def similarity_search(queries, doc): | |
| doc_list = doc.split('\n') | |
| query_list = queries.split('\n') | |
| corpus_embeddings = embedder.encode(doc_list, convert_to_tensor=True) | |
| top_k = min(10, len(doc_list)) | |
| output = "" | |
| for query in query_list: | |
| query_embedding = embedder.encode(query, convert_to_tensor=True) | |
| # We use cosine-similarity and torch.topk to find the highest 5 scores | |
| cos_scores = util.cos_sim(query_embedding, corpus_embeddings)[0] | |
| top_results = torch.topk(cos_scores, k=top_k) | |
| output += "\n\n======================\n\n" | |
| output += f"Query: {query}" | |
| output += "\nTop 5 most similar sentences in corpus:\n" | |
| for score, idx in zip(top_results[0], top_results[1]): | |
| output += f"{doc_list[idx]}(Score: {score})\n" | |
| return output | |
| # web ui | |
| with gr.Blocks() as app: | |
| gr.Markdown("从下面的标签选择测试模块 [摘要生成,相似度检测]") | |
| with gr.Tab("LexRank-mpnet"): | |
| text_input_1 = gr.Textbox(label="请输入长文本:", lines=10, max_lines=1000) | |
| with gr.Row(): | |
| text_button_1 = gr.Button("生成摘要") | |
| siblings_input_1 = gr.Textbox(label="请输入摘要的宽度半径, 默认为0, 即显示摘要本身.") | |
| num_input_1 = gr.Textbox(label="摘要的条数, 默认10条") | |
| text_output_1 = gr.Textbox(label="摘要文本", lines=10) | |
| with gr.Tab("shibing624/text2vec-base-chinese-paraphrase"): | |
| text_input_2 = gr.Textbox(label="请输入长文本:", lines=10, max_lines=1000) | |
| with gr.Row(): | |
| text_button_2 = gr.Button("生成摘要") | |
| siblings_input_2 = gr.Textbox(label="请输入摘要的宽度半径, 默认为0, 即显示摘要本身.") | |
| num_input_2 = gr.Textbox(label="摘要的条数, 默认10条") | |
| text_output_2 = gr.Textbox(label="摘要文本", lines=10) | |
| with gr.Tab("LexRank-MiniLM-L12-v2"): | |
| text_input_3 = gr.Textbox(label="请输入长文本:", lines=10, max_lines=1000) | |
| with gr.Row(): | |
| text_button_3 = gr.Button("生成摘要") | |
| siblings_input_3 = gr.Textbox(label="请输入摘要的宽度半径, 默认为0, 即显示摘要本身.") | |
| num_input_3 = gr.Textbox(label="摘要的条数, 默认10条") | |
| text_output_3 = gr.Textbox(label="摘要文本", lines=10) | |
| with gr.Tab("相似度检测"): | |
| with gr.Row(): | |
| text_input_query = gr.Textbox(lines=10, label="查询文本") | |
| text_input_doc = gr.Textbox(lines=20, label="逐行输入待比较的文本列表") | |
| text_button_similarity = gr.Button("对比相似度") | |
| text_output_similarity = gr.Textbox() | |
| text_button_1.click(extract_handler, inputs=[text_input_1, siblings_input_1, num_input_1], outputs=text_output_1) | |
| text_button_2.click(extract_handler_distiluse_v1, inputs=[text_input_2, siblings_input_2, num_input_2], outputs=text_output_2) | |
| text_button_3.click(extract_handler_l12, inputs=[text_input_3, siblings_input_3, num_input_3], outputs=text_output_3) | |
| text_button_similarity.click(similarity_search, inputs=[text_input_query, text_input_doc], outputs=text_output_similarity) | |
| app.launch( | |
| # enable share will generate a temporary public link. | |
| # share=True, | |
| # debug=True, | |
| # auth=("qee", "world"), | |
| # auth_message="请登陆" | |
| ) | |