Spaces:
Build error
Build error
hellopahe
commited on
Commit
·
4cc4d15
1
Parent(s):
261e2d7
add cleaning process by GLMs.
Browse files- app.py +16 -11
- ask_glm_4_help.py +29 -0
app.py
CHANGED
|
@@ -1,9 +1,10 @@
|
|
| 1 |
-
import
|
| 2 |
|
| 3 |
from lex_rank import LexRank
|
| 4 |
from lex_rank_text2vec_v1 import LexRankText2VecV1
|
| 5 |
from lex_rank_L12 import LexRankL12
|
| 6 |
from sentence_transformers import SentenceTransformer, util
|
|
|
|
| 7 |
|
| 8 |
|
| 9 |
# ---===--- instances ---===---
|
|
@@ -11,6 +12,7 @@ embedder = SentenceTransformer('paraphrase-multilingual-mpnet-base-v2')
|
|
| 11 |
lex = LexRank()
|
| 12 |
lex_distiluse_v1 = LexRankText2VecV1()
|
| 13 |
lex_l12 = LexRankL12()
|
|
|
|
| 14 |
|
| 15 |
|
| 16 |
# 摘要方法1
|
|
@@ -23,9 +25,10 @@ def extract_handler(content, siblings, num):
|
|
| 23 |
siblings = int(siblings)
|
| 24 |
num = int(num)
|
| 25 |
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
|
|
|
| 29 |
for index, sentence in enumerate(sentences):
|
| 30 |
output += f"{index}: {sentence}\n"
|
| 31 |
return output
|
|
@@ -41,9 +44,10 @@ def extract_handler_distiluse_v1(content, siblings, num):
|
|
| 41 |
siblings = int(siblings)
|
| 42 |
num = int(num)
|
| 43 |
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
|
|
|
| 47 |
for index, sentence in enumerate(sentences):
|
| 48 |
output += f"{index}: {sentence}\n"
|
| 49 |
return output
|
|
@@ -59,9 +63,10 @@ def extract_handler_l12(content, siblings, num):
|
|
| 59 |
siblings = int(siblings)
|
| 60 |
num = int(num)
|
| 61 |
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
|
|
|
| 65 |
for index, sentence in enumerate(sentences):
|
| 66 |
output += f"{index}: {sentence}\n"
|
| 67 |
return output
|
|
@@ -103,7 +108,7 @@ with gr.Blocks() as app:
|
|
| 103 |
with gr.Row():
|
| 104 |
text_button_2 = gr.Button("生成摘要")
|
| 105 |
siblings_input_2 = gr.Textbox(label="请输入摘要的宽度半径, 默认为0, 即显示摘要本身.")
|
| 106 |
-
num_input_2 = gr.Textbox(label="
|
| 107 |
text_output_2 = gr.Textbox(label="摘要文本", lines=10)
|
| 108 |
with gr.Tab("LexRank-MiniLM-L12-v2"):
|
| 109 |
text_input_3 = gr.Textbox(label="请输入长文本:", lines=10, max_lines=1000)
|
|
|
|
| 1 |
+
import torch, gradio as gr
|
| 2 |
|
| 3 |
from lex_rank import LexRank
|
| 4 |
from lex_rank_text2vec_v1 import LexRankText2VecV1
|
| 5 |
from lex_rank_L12 import LexRankL12
|
| 6 |
from sentence_transformers import SentenceTransformer, util
|
| 7 |
+
from ask_glm_4_help import GlmHelper
|
| 8 |
|
| 9 |
|
| 10 |
# ---===--- instances ---===---
|
|
|
|
| 12 |
lex = LexRank()
|
| 13 |
lex_distiluse_v1 = LexRankText2VecV1()
|
| 14 |
lex_l12 = LexRankL12()
|
| 15 |
+
glm_helper = GlmHelper()
|
| 16 |
|
| 17 |
|
| 18 |
# 摘要方法1
|
|
|
|
| 25 |
siblings = int(siblings)
|
| 26 |
num = int(num)
|
| 27 |
|
| 28 |
+
glm_summarized_content = GlmHelper.clean_raw_content(content)
|
| 29 |
+
|
| 30 |
+
sentences = lex.find_central(glm_summarized_content, siblings=siblings, num=num)
|
| 31 |
+
output = f""">>>>>经过大模型清洗之后的文章为:\n{glm_summarized_content}\n\t>>>>>摘要为:\n"""
|
| 32 |
for index, sentence in enumerate(sentences):
|
| 33 |
output += f"{index}: {sentence}\n"
|
| 34 |
return output
|
|
|
|
| 44 |
siblings = int(siblings)
|
| 45 |
num = int(num)
|
| 46 |
|
| 47 |
+
glm_summarized_content = GlmHelper.clean_raw_content(content)
|
| 48 |
+
|
| 49 |
+
sentences = lex.find_central(glm_summarized_content, siblings=siblings, num=num)
|
| 50 |
+
output = f""">>>>>经过大模型清洗之后的文章为:\n{glm_summarized_content}\n\t>>>>>摘要为:\n"""
|
| 51 |
for index, sentence in enumerate(sentences):
|
| 52 |
output += f"{index}: {sentence}\n"
|
| 53 |
return output
|
|
|
|
| 63 |
siblings = int(siblings)
|
| 64 |
num = int(num)
|
| 65 |
|
| 66 |
+
glm_summarized_content = GlmHelper.clean_raw_content(content)
|
| 67 |
+
|
| 68 |
+
sentences = lex.find_central(glm_summarized_content, siblings=siblings, num=num)
|
| 69 |
+
output = f""">>>>>经过大模型清洗之后的文章为:\n{glm_summarized_content}\n\t>>>>>摘要为:\n"""
|
| 70 |
for index, sentence in enumerate(sentences):
|
| 71 |
output += f"{index}: {sentence}\n"
|
| 72 |
return output
|
|
|
|
| 108 |
with gr.Row():
|
| 109 |
text_button_2 = gr.Button("生成摘要")
|
| 110 |
siblings_input_2 = gr.Textbox(label="请输入摘要的宽度半径, 默认为0, 即显示摘要本身.")
|
| 111 |
+
num_input_2 = gr.Textbox(label="摘要的条数, 默认10条")
|
| 112 |
text_output_2 = gr.Textbox(label="摘要文本", lines=10)
|
| 113 |
with gr.Tab("LexRank-MiniLM-L12-v2"):
|
| 114 |
text_input_3 = gr.Textbox(label="请输入长文本:", lines=10, max_lines=1000)
|
ask_glm_4_help.py
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import requests
|
| 2 |
+
import json
|
| 3 |
+
|
| 4 |
+
SYS_MSG_4_CLEANING = "你是一个AI助手, 能将我给你的文章去除与主题无关的句子, 并尽量保留所有与主题相关的句子."
|
| 5 |
+
|
| 6 |
+
class GlmHelper(object):
|
| 7 |
+
def clean_raw_content(self, content: str):
|
| 8 |
+
history = []
|
| 9 |
+
rply = self.bot_message_handler(message=content, history=history, sys_msg=SYS_MSG_4_CLEANING)
|
| 10 |
+
return rply
|
| 11 |
+
|
| 12 |
+
# 携带知识库文本询问LLM
|
| 13 |
+
def bot_message_handler(self, message: str, history: [list], sys_msg: str):
|
| 14 |
+
request_body = {
|
| 15 |
+
"prompt": f"""
|
| 16 |
+
<s>[INST] <<SYS>>\n{sys_msg}\n<</SYS>>\n\n{message} [/INST]
|
| 17 |
+
""",
|
| 18 |
+
"knowledge": """
|
| 19 |
+
""",
|
| 20 |
+
"history": history,
|
| 21 |
+
"max_length": 2048 * 4,
|
| 22 |
+
}
|
| 23 |
+
rply = requests.post("http://region-9.autodl.pro:19567/gradio", data=json.dumps(request_body))
|
| 24 |
+
try:
|
| 25 |
+
reply_from_GLM = rply.json()["response"]
|
| 26 |
+
except:
|
| 27 |
+
reply_from_GLM = "GLM Api返回了坏的请求..."
|
| 28 |
+
|
| 29 |
+
return reply_from_GLM
|