Spaces:
Sleeping
Sleeping
| from fastapi import FastAPI,Query | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| import torch | |
| import os | |
| from pydantic import BaseModel | |
| from fastapi.middleware.cors import CORSMiddleware | |
| from fastapi.responses import HTMLResponse | |
| from fastapi.staticfiles import StaticFiles | |
| # ✅ Force Hugging Face cache to /tmp (writable in Spaces) | |
| os.environ["HF_HOME"] = "/tmp" | |
| os.environ["TRANSFORMERS_CACHE"] = "/tmp" | |
| model_id = "rabiyulfahim/qa_python_gpt2" | |
| tokenizer = AutoTokenizer.from_pretrained(model_id, cache_dir="/tmp") | |
| model = AutoModelForCausalLM.from_pretrained(model_id, cache_dir="/tmp") | |
| app = FastAPI(title="QA GPT2 API UI", description="Serving HuggingFace model with FastAPI") | |
| app.add_middleware( | |
| CORSMiddleware, | |
| allow_origins=["*"], | |
| allow_credentials=True, | |
| allow_methods=["*"], | |
| allow_headers=["*"], | |
| ) | |
| # Request schema | |
| class QueryRequest(BaseModel): | |
| question: str | |
| max_new_tokens: int = 50 | |
| temperature: float = 0.7 | |
| top_p: float = 0.9 | |
| def home(): | |
| return {"message": "Welcome to QA GPT2 API 🚀"} | |
| def ask(question: str, max_new_tokens: int = 50): | |
| inputs = tokenizer(question, return_tensors="pt") | |
| outputs = model.generate(**inputs, max_new_tokens=max_new_tokens) | |
| answer = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| return {"question": question, "answer": answer} | |
| # Mount static folder | |
| app.mount("/static", StaticFiles(directory="static"), name="static") | |
| def serve_ui(): | |
| html_path = os.path.join("static", "index.html") | |
| with open(html_path, "r", encoding="utf-8") as f: | |
| return HTMLResponse(f.read()) | |
| # Health check endpoint | |
| def health(): | |
| return {"status": "ok"} | |
| # Inference endpoint | |
| def predict(request: QueryRequest): | |
| inputs = tokenizer(request.question, return_tensors="pt") | |
| outputs = model.generate( | |
| **inputs, | |
| max_new_tokens=request.max_new_tokens, | |
| do_sample=True, | |
| temperature=0.7, | |
| top_p=0.9, | |
| pad_token_id=tokenizer.eos_token_id, | |
| return_dict_in_generate=True | |
| ) | |
| answer = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True) | |
| return { | |
| "question": request.question, | |
| "answer": answer | |
| } | |
| def predict(question: str = Query(..., description="The question to ask"), max_new_tokens: int = Query(50, description="Max new tokens to generate")): | |
| # Tokenize the input question | |
| inputs = tokenizer(question, return_tensors="pt") | |
| # Generate output from model | |
| outputs = model.generate( | |
| **inputs, | |
| max_new_tokens=max_new_tokens, | |
| do_sample=True, | |
| temperature=0.7, | |
| top_p=0.9, | |
| pad_token_id=tokenizer.eos_token_id, | |
| return_dict_in_generate=True | |
| ) | |
| # Decode output | |
| answer = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True) | |
| return { | |
| "question": question, | |
| "answer": answer | |
| } |