Spaces:
Sleeping
Sleeping
File size: 3,046 Bytes
3edcf27 c8ad3e4 287f932 511a6d9 287f932 c8ad3e4 84f3de7 c8ad3e4 287f932 c8ad3e4 511a6d9 c8ad3e4 b87b24a c8ad3e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
from fastapi import FastAPI,Query
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import os
from pydantic import BaseModel
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import HTMLResponse
from fastapi.staticfiles import StaticFiles
# ✅ Force Hugging Face cache to /tmp (writable in Spaces)
os.environ["HF_HOME"] = "/tmp"
os.environ["TRANSFORMERS_CACHE"] = "/tmp"
model_id = "rabiyulfahim/qa_python_gpt2"
tokenizer = AutoTokenizer.from_pretrained(model_id, cache_dir="/tmp")
model = AutoModelForCausalLM.from_pretrained(model_id, cache_dir="/tmp")
app = FastAPI(title="QA GPT2 API UI", description="Serving HuggingFace model with FastAPI")
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Request schema
class QueryRequest(BaseModel):
question: str
max_new_tokens: int = 50
temperature: float = 0.7
top_p: float = 0.9
@app.get("/")
def home():
return {"message": "Welcome to QA GPT2 API 🚀"}
@app.get("/ask")
def ask(question: str, max_new_tokens: int = 50):
inputs = tokenizer(question, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=max_new_tokens)
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
return {"question": question, "answer": answer}
# Mount static folder
app.mount("/static", StaticFiles(directory="static"), name="static")
@app.get("/ui", response_class=HTMLResponse)
def serve_ui():
html_path = os.path.join("static", "index.html")
with open(html_path, "r", encoding="utf-8") as f:
return HTMLResponse(f.read())
# Health check endpoint
@app.get("/health")
def health():
return {"status": "ok"}
# Inference endpoint
@app.post("/predict")
def predict(request: QueryRequest):
inputs = tokenizer(request.question, return_tensors="pt")
outputs = model.generate(
**inputs,
max_new_tokens=request.max_new_tokens,
do_sample=True,
temperature=0.7,
top_p=0.9,
pad_token_id=tokenizer.eos_token_id,
return_dict_in_generate=True
)
answer = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True)
return {
"question": request.question,
"answer": answer
}
@app.get("/answers")
def predict(question: str = Query(..., description="The question to ask"), max_new_tokens: int = Query(50, description="Max new tokens to generate")):
# Tokenize the input question
inputs = tokenizer(question, return_tensors="pt")
# Generate output from model
outputs = model.generate(
**inputs,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=0.7,
top_p=0.9,
pad_token_id=tokenizer.eos_token_id,
return_dict_in_generate=True
)
# Decode output
answer = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True)
return {
"question": question,
"answer": answer
} |