qa_python_api / app.py
rabiyulfahim's picture
Update app.py
287f932 verified
from fastapi import FastAPI,Query
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import os
from pydantic import BaseModel
from fastapi.middleware.cors import CORSMiddleware
# βœ… Force Hugging Face cache to /tmp (writable in Spaces)
os.environ["HF_HOME"] = "/tmp"
os.environ["TRANSFORMERS_CACHE"] = "/tmp"
model_id = "rabiyulfahim/qa_python_gpt2"
tokenizer = AutoTokenizer.from_pretrained(model_id, cache_dir="/tmp")
model = AutoModelForCausalLM.from_pretrained(model_id, cache_dir="/tmp")
app = FastAPI(title="QA GPT2 API", description="Serving HuggingFace model with FastAPI")
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Request schema
class QueryRequest(BaseModel):
question: str
max_new_tokens: int = 50
temperature: float = 0.7
top_p: float = 0.9
@app.get("/")
def home():
return {"message": "Welcome to QA GPT2 API πŸš€"}
@app.get("/ask")
def ask(question: str, max_new_tokens: int = 50):
inputs = tokenizer(question, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=max_new_tokens)
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
return {"question": question, "answer": answer}
# Health check endpoint
@app.get("/health")
def health():
return {"status": "ok"}
# Inference endpoint
@app.post("/predict")
def predict(request: QueryRequest):
inputs = tokenizer(request.question, return_tensors="pt")
outputs = model.generate(
**inputs,
max_new_tokens=request.max_new_tokens,
do_sample=True,
temperature=0.7,
top_p=0.9,
pad_token_id=tokenizer.eos_token_id,
return_dict_in_generate=True
)
answer = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True)
return {
"question": request.question,
"answer": answer
}
@app.get("/answers")
def predict(question: str = Query(..., description="The question to ask"), max_new_tokens: int = Query(50, description="Max new tokens to generate")):
# Tokenize the input question
inputs = tokenizer(question, return_tensors="pt")
# Generate output from model
outputs = model.generate(
**inputs,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=0.7,
top_p=0.9,
pad_token_id=tokenizer.eos_token_id,
return_dict_in_generate=True
)
# Decode output
answer = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True)
return {
"question": question,
"answer": answer
}