File size: 2,657 Bytes
3edcf27
c8ad3e4
 
 
 
287f932
 
c8ad3e4
 
 
 
 
 
 
 
 
 
 
 
 
 
287f932
 
 
 
 
 
 
c8ad3e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b87b24a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8ad3e4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
from fastapi import FastAPI,Query
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import os
from pydantic import BaseModel
from fastapi.middleware.cors import CORSMiddleware


# ✅ Force Hugging Face cache to /tmp (writable in Spaces)
os.environ["HF_HOME"] = "/tmp"
os.environ["TRANSFORMERS_CACHE"] = "/tmp"


model_id = "rabiyulfahim/qa_python_gpt2"

tokenizer = AutoTokenizer.from_pretrained(model_id, cache_dir="/tmp")
model = AutoModelForCausalLM.from_pretrained(model_id, cache_dir="/tmp")


app = FastAPI(title="QA GPT2 API", description="Serving HuggingFace model with FastAPI")

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)
# Request schema
class QueryRequest(BaseModel):
    question: str
    max_new_tokens: int = 50
    temperature: float = 0.7
    top_p: float = 0.9


@app.get("/")
def home():
    return {"message": "Welcome to QA GPT2 API 🚀"}

@app.get("/ask")
def ask(question: str, max_new_tokens: int = 50):
    inputs = tokenizer(question, return_tensors="pt")
    outputs = model.generate(**inputs, max_new_tokens=max_new_tokens)
    answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return {"question": question, "answer": answer}



# Health check endpoint
@app.get("/health")
def health():
    return {"status": "ok"}

# Inference endpoint
@app.post("/predict")
def predict(request: QueryRequest):
    inputs = tokenizer(request.question, return_tensors="pt")
    outputs = model.generate(
        **inputs,
        max_new_tokens=request.max_new_tokens,
        do_sample=True,
        temperature=0.7,
        top_p=0.9,
        pad_token_id=tokenizer.eos_token_id,
        return_dict_in_generate=True
    )

    answer = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True)
    return {
        "question": request.question,
        "answer": answer
    }




@app.get("/answers")
def predict(question: str = Query(..., description="The question to ask"), max_new_tokens: int = Query(50, description="Max new tokens to generate")):
    # Tokenize the input question
    inputs = tokenizer(question, return_tensors="pt")

    # Generate output from model
    outputs = model.generate(
        **inputs,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        temperature=0.7,
        top_p=0.9,
        pad_token_id=tokenizer.eos_token_id,
        return_dict_in_generate=True
    )

    # Decode output
    answer = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True)

    return {
        "question": question,
        "answer": answer
    }