lucid-hf's picture
CI: deploy Docker/PDM Space
98a3af2 verified
"""
DEIM: DETR with Improved Matching for Fast Convergence
Copyright (c) 2024 The DEIM Authors. All Rights Reserved.
---------------------------------------------------------------------------------
Modified from DETR (https://github.com/facebookresearch/detr/blob/main/engine.py)
Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
"""
import sys
import math
import gc
import os
from typing import Iterable
import torch
import torch.amp
from torch.utils.tensorboard import SummaryWriter
from torch.cuda.amp.grad_scaler import GradScaler
import cv2
import numpy as np
from ..optim import ModelEMA, Warmup
from ..data import CocoEvaluator
from ..misc import MetricLogger, SmoothedValue, dist_utils
try:
import wandb
_WANDB_AVAILABLE = True
except ImportError:
_WANDB_AVAILABLE = False
wandb = None
def visualize_augmented_batch(samples, targets, epoch, step):
"""
Visualize augmented images with bounding boxes using OpenCV imshow.
Args:
samples (torch.Tensor): Batch of images [B, C, H, W]
targets (list): List of target dictionaries
epoch (int): Current epoch
step (int): Current step
"""
for idx in range(len(samples)):
img = samples[idx].detach().cpu().permute(1, 2, 0).numpy()
img_bgr = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
img_bgr = (img_bgr * 255).astype(np.uint8)
print(targets[idx]["image_id"])
boxes = targets[idx]['boxes'].detach().cpu()
labels = targets[idx].get('labels', None)
h, w = img_bgr.shape[:2]
print(len(boxes))
boxes_np = boxes.numpy()
for i, box in enumerate(boxes_np):
cx, cy, bw, bh = box
x1 = int((cx - bw / 2) * w)
y1 = int((cy - bh / 2) * h)
x2 = int((cx + bw / 2) * w)
y2 = int((cy + bh / 2) * h)
cv2.rectangle(img_bgr, (x1, y1), (x2, y2), (0, 0, 255), 3)
print(f"box: {(x1, y1), (x2, y2)}")
label = f"cls_{int(labels[i])}"
label_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.8, 2)[0]
label_y = max(label_size[1] + 5, y1 - 5)
cv2.rectangle(img_bgr, (x1, label_y - label_size[1] - 5),
(x1 + label_size[0] + 10, label_y + 5), (0, 0, 255), -1)
cv2.putText(img_bgr, label, (x1 + 5, label_y),
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255, 255, 255), 2)
cv2.namedWindow('img', cv2.WINDOW_KEEPRATIO)
cv2.imshow("img", img_bgr)
cv2.waitKey(0)
def train_one_epoch(self_lr_scheduler, lr_scheduler, model: torch.nn.Module, criterion: torch.nn.Module,
data_loader: Iterable, optimizer: torch.optim.Optimizer,
device: torch.device, epoch: int, max_norm: float = 0, **kwargs):
model.train()
criterion.train()
metric_logger = MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = kwargs.get('print_freq', 10)
writer :SummaryWriter = kwargs.get('writer', None)
ema :ModelEMA = kwargs.get('ema', None)
scaler :GradScaler = kwargs.get('scaler', None)
lr_warmup_scheduler :Warmup = kwargs.get('lr_warmup_scheduler', None)
# wandb parameters
use_wandb = kwargs.get('use_wandb', False)
wandb_run = kwargs.get('wandb_run', None)
wandb_log_freq = kwargs.get('wandb_log_freq', 10)
# gradient accumulation parameters
gradient_accumulation_steps = kwargs.get('gradient_accumulation_steps', 1)
cur_iters = epoch * len(data_loader)
# Zero gradients at the beginning of epoch
optimizer.zero_grad()
for i, (samples, targets) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
samples = samples.to(device)
targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
global_step = epoch * len(data_loader) + i
# Create metas as a simple dict without accumulating references
metas = {'epoch': epoch, 'step': i, 'global_step': global_step, 'epoch_step': len(data_loader)}
# Periodic garbage collection to prevent memory accumulation
if i > 0 and i % 100 == 0:
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
# --- VISUALIZE AUGMENTED IMAGES & TARGETS (before model inference) ---
enable_vis = kwargs.get('enable_vis', False)
if enable_vis and dist_utils.is_main_process():
visualize_augmented_batch(samples, targets, epoch, i)
# ------------------------------------------------------------------------
if scaler is not None:
with torch.autocast(device_type=str(device), cache_enabled=True):
outputs = model(samples, targets=targets)
if torch.isnan(outputs['pred_boxes']).any() or torch.isinf(outputs['pred_boxes']).any():
print(outputs['pred_boxes'])
state = model.state_dict()
new_state = {}
for key, value in model.state_dict().items():
# Replace 'module' with 'model' in each key
new_key = key.replace('module.', '')
# Add the updated key-value pair to the state dictionary
state[new_key] = value
new_state['model'] = state
dist_utils.save_on_master(new_state, "./NaN.pth")
with torch.autocast(device_type=str(device), enabled=False):
loss_dict = criterion(outputs, targets, **metas)
# Store keys for later reconstruction
loss_keys = list(loss_dict.keys())
loss_values = list(loss_dict.values())
loss = sum(loss_values)
# Scale loss for gradient accumulation
loss = loss / gradient_accumulation_steps
scaler.scale(loss).backward()
# Only step and zero gradients every gradient_accumulation_steps
if (i + 1) % gradient_accumulation_steps == 0:
if max_norm > 0:
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm)
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
else:
# --- VISUALIZE AUGMENTED IMAGES & TARGETS (before model inference) ---
enable_vis = kwargs.get('enable_vis', False)
if enable_vis and dist_utils.is_main_process():
visualize_augmented_batch(samples, targets, epoch, i)
# ------------------------------------------------------------------------
outputs = model(samples, targets=targets)
loss_dict = criterion(outputs, targets, **metas)
# Store keys for later reconstruction
loss_keys = list(loss_dict.keys())
loss_values = list(loss_dict.values())
loss : torch.Tensor = sum(loss_values)
# Scale loss for gradient accumulation
loss = loss / gradient_accumulation_steps
loss.backward()
# Only step and zero gradients every gradient_accumulation_steps
if (i + 1) % gradient_accumulation_steps == 0:
if max_norm > 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm)
optimizer.step()
optimizer.zero_grad()
# ema
if ema is not None:
ema.update(model)
if self_lr_scheduler:
optimizer = lr_scheduler.step(cur_iters + i, optimizer)
else:
if lr_warmup_scheduler is not None:
lr_warmup_scheduler.step()
# Recreate loss_dict for logging
loss_dict = dict(zip(loss_keys, loss_values))
loss_dict_reduced = dist_utils.reduce_dict(loss_dict)
loss_value = sum(loss_dict_reduced.values())
# Clean up references
del loss_dict, outputs
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
print(loss_dict_reduced)
sys.exit(1)
metric_logger.update(loss=loss_value, **loss_dict_reduced)
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
if writer and dist_utils.is_main_process() and global_step % 10 == 0:
writer.add_scalar('Loss/total', loss_value.item(), global_step)
for j, pg in enumerate(optimizer.param_groups):
writer.add_scalar(f'Lr/pg_{j}', pg['lr'], global_step)
for k, v in loss_dict_reduced.items():
writer.add_scalar(f'Loss/{k}', v.item(), global_step)
# wandb logging
if (use_wandb and wandb_run is not None and _WANDB_AVAILABLE and
dist_utils.is_main_process() and global_step % wandb_log_freq == 0):
log_dict = {
'train/loss_total': loss_value.item(),
'train/learning_rate': optimizer.param_groups[0]['lr'],
'train/epoch': epoch,
'train/step': global_step
}
# Add individual loss components
for k, v in loss_dict_reduced.items():
log_dict[f'train/loss_{k}'] = v.item()
wandb.log(log_dict, step=global_step)
# Step optimizer if there are remaining accumulated gradients at the end of epoch
if (i + 1) % gradient_accumulation_steps != 0:
if scaler is not None:
if max_norm > 0:
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm)
scaler.step(optimizer)
scaler.update()
else:
if max_norm > 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm)
optimizer.step()
optimizer.zero_grad()
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
# Final cleanup at end of epoch
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def evaluate(model: torch.nn.Module, criterion: torch.nn.Module, postprocessor, data_loader, coco_evaluator: CocoEvaluator, device):
model.eval()
criterion.eval()
coco_evaluator.cleanup()
metric_logger = MetricLogger(delimiter=" ")
# metric_logger.add_meter('class_error', SmoothedValue(window_size=1, fmt='{value:.2f}'))
header = 'Test:'
# iou_types = tuple(k for k in ('segm', 'bbox') if k in postprocessor.keys())
iou_types = coco_evaluator.iou_types
# coco_evaluator = CocoEvaluator(base_ds, iou_types)
# coco_evaluator.coco_eval[iou_types[0]].params.iouThrs = [0, 0.1, 0.5, 0.75]
for samples, targets in metric_logger.log_every(data_loader, 10, header):
samples = samples.to(device)
targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
outputs = model(samples)
orig_target_sizes = torch.stack([t["orig_size"] for t in targets], dim=0)
results = postprocessor(outputs, orig_target_sizes)
# if 'segm' in postprocessor.keys():
# target_sizes = torch.stack([t["size"] for t in targets], dim=0)
# results = postprocessor['segm'](results, outputs, orig_target_sizes, target_sizes)
res = {target['image_id'].item(): output for target, output in zip(targets, results)}
if coco_evaluator is not None:
coco_evaluator.update(res)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
if coco_evaluator is not None:
coco_evaluator.synchronize_between_processes()
# accumulate predictions from all images
if coco_evaluator is not None:
coco_evaluator.accumulate()
coco_evaluator.summarize()
stats = {}
# stats = {k: meter.global_avg for k, meter in metric_logger.meters.items()}
if coco_evaluator is not None:
if 'bbox' in iou_types:
stats['coco_eval_bbox'] = coco_evaluator.coco_eval['bbox'].stats.tolist()
if 'segm' in iou_types:
stats['coco_eval_masks'] = coco_evaluator.coco_eval['segm'].stats.tolist()
return stats, coco_evaluator