Spaces:
Sleeping
Sleeping
File size: 12,614 Bytes
98a3af2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
"""
DEIM: DETR with Improved Matching for Fast Convergence
Copyright (c) 2024 The DEIM Authors. All Rights Reserved.
---------------------------------------------------------------------------------
Modified from DETR (https://github.com/facebookresearch/detr/blob/main/engine.py)
Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
"""
import sys
import math
import gc
import os
from typing import Iterable
import torch
import torch.amp
from torch.utils.tensorboard import SummaryWriter
from torch.cuda.amp.grad_scaler import GradScaler
import cv2
import numpy as np
from ..optim import ModelEMA, Warmup
from ..data import CocoEvaluator
from ..misc import MetricLogger, SmoothedValue, dist_utils
try:
import wandb
_WANDB_AVAILABLE = True
except ImportError:
_WANDB_AVAILABLE = False
wandb = None
def visualize_augmented_batch(samples, targets, epoch, step):
"""
Visualize augmented images with bounding boxes using OpenCV imshow.
Args:
samples (torch.Tensor): Batch of images [B, C, H, W]
targets (list): List of target dictionaries
epoch (int): Current epoch
step (int): Current step
"""
for idx in range(len(samples)):
img = samples[idx].detach().cpu().permute(1, 2, 0).numpy()
img_bgr = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
img_bgr = (img_bgr * 255).astype(np.uint8)
print(targets[idx]["image_id"])
boxes = targets[idx]['boxes'].detach().cpu()
labels = targets[idx].get('labels', None)
h, w = img_bgr.shape[:2]
print(len(boxes))
boxes_np = boxes.numpy()
for i, box in enumerate(boxes_np):
cx, cy, bw, bh = box
x1 = int((cx - bw / 2) * w)
y1 = int((cy - bh / 2) * h)
x2 = int((cx + bw / 2) * w)
y2 = int((cy + bh / 2) * h)
cv2.rectangle(img_bgr, (x1, y1), (x2, y2), (0, 0, 255), 3)
print(f"box: {(x1, y1), (x2, y2)}")
label = f"cls_{int(labels[i])}"
label_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.8, 2)[0]
label_y = max(label_size[1] + 5, y1 - 5)
cv2.rectangle(img_bgr, (x1, label_y - label_size[1] - 5),
(x1 + label_size[0] + 10, label_y + 5), (0, 0, 255), -1)
cv2.putText(img_bgr, label, (x1 + 5, label_y),
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255, 255, 255), 2)
cv2.namedWindow('img', cv2.WINDOW_KEEPRATIO)
cv2.imshow("img", img_bgr)
cv2.waitKey(0)
def train_one_epoch(self_lr_scheduler, lr_scheduler, model: torch.nn.Module, criterion: torch.nn.Module,
data_loader: Iterable, optimizer: torch.optim.Optimizer,
device: torch.device, epoch: int, max_norm: float = 0, **kwargs):
model.train()
criterion.train()
metric_logger = MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = kwargs.get('print_freq', 10)
writer :SummaryWriter = kwargs.get('writer', None)
ema :ModelEMA = kwargs.get('ema', None)
scaler :GradScaler = kwargs.get('scaler', None)
lr_warmup_scheduler :Warmup = kwargs.get('lr_warmup_scheduler', None)
# wandb parameters
use_wandb = kwargs.get('use_wandb', False)
wandb_run = kwargs.get('wandb_run', None)
wandb_log_freq = kwargs.get('wandb_log_freq', 10)
# gradient accumulation parameters
gradient_accumulation_steps = kwargs.get('gradient_accumulation_steps', 1)
cur_iters = epoch * len(data_loader)
# Zero gradients at the beginning of epoch
optimizer.zero_grad()
for i, (samples, targets) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
samples = samples.to(device)
targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
global_step = epoch * len(data_loader) + i
# Create metas as a simple dict without accumulating references
metas = {'epoch': epoch, 'step': i, 'global_step': global_step, 'epoch_step': len(data_loader)}
# Periodic garbage collection to prevent memory accumulation
if i > 0 and i % 100 == 0:
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
# --- VISUALIZE AUGMENTED IMAGES & TARGETS (before model inference) ---
enable_vis = kwargs.get('enable_vis', False)
if enable_vis and dist_utils.is_main_process():
visualize_augmented_batch(samples, targets, epoch, i)
# ------------------------------------------------------------------------
if scaler is not None:
with torch.autocast(device_type=str(device), cache_enabled=True):
outputs = model(samples, targets=targets)
if torch.isnan(outputs['pred_boxes']).any() or torch.isinf(outputs['pred_boxes']).any():
print(outputs['pred_boxes'])
state = model.state_dict()
new_state = {}
for key, value in model.state_dict().items():
# Replace 'module' with 'model' in each key
new_key = key.replace('module.', '')
# Add the updated key-value pair to the state dictionary
state[new_key] = value
new_state['model'] = state
dist_utils.save_on_master(new_state, "./NaN.pth")
with torch.autocast(device_type=str(device), enabled=False):
loss_dict = criterion(outputs, targets, **metas)
# Store keys for later reconstruction
loss_keys = list(loss_dict.keys())
loss_values = list(loss_dict.values())
loss = sum(loss_values)
# Scale loss for gradient accumulation
loss = loss / gradient_accumulation_steps
scaler.scale(loss).backward()
# Only step and zero gradients every gradient_accumulation_steps
if (i + 1) % gradient_accumulation_steps == 0:
if max_norm > 0:
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm)
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
else:
# --- VISUALIZE AUGMENTED IMAGES & TARGETS (before model inference) ---
enable_vis = kwargs.get('enable_vis', False)
if enable_vis and dist_utils.is_main_process():
visualize_augmented_batch(samples, targets, epoch, i)
# ------------------------------------------------------------------------
outputs = model(samples, targets=targets)
loss_dict = criterion(outputs, targets, **metas)
# Store keys for later reconstruction
loss_keys = list(loss_dict.keys())
loss_values = list(loss_dict.values())
loss : torch.Tensor = sum(loss_values)
# Scale loss for gradient accumulation
loss = loss / gradient_accumulation_steps
loss.backward()
# Only step and zero gradients every gradient_accumulation_steps
if (i + 1) % gradient_accumulation_steps == 0:
if max_norm > 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm)
optimizer.step()
optimizer.zero_grad()
# ema
if ema is not None:
ema.update(model)
if self_lr_scheduler:
optimizer = lr_scheduler.step(cur_iters + i, optimizer)
else:
if lr_warmup_scheduler is not None:
lr_warmup_scheduler.step()
# Recreate loss_dict for logging
loss_dict = dict(zip(loss_keys, loss_values))
loss_dict_reduced = dist_utils.reduce_dict(loss_dict)
loss_value = sum(loss_dict_reduced.values())
# Clean up references
del loss_dict, outputs
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
print(loss_dict_reduced)
sys.exit(1)
metric_logger.update(loss=loss_value, **loss_dict_reduced)
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
if writer and dist_utils.is_main_process() and global_step % 10 == 0:
writer.add_scalar('Loss/total', loss_value.item(), global_step)
for j, pg in enumerate(optimizer.param_groups):
writer.add_scalar(f'Lr/pg_{j}', pg['lr'], global_step)
for k, v in loss_dict_reduced.items():
writer.add_scalar(f'Loss/{k}', v.item(), global_step)
# wandb logging
if (use_wandb and wandb_run is not None and _WANDB_AVAILABLE and
dist_utils.is_main_process() and global_step % wandb_log_freq == 0):
log_dict = {
'train/loss_total': loss_value.item(),
'train/learning_rate': optimizer.param_groups[0]['lr'],
'train/epoch': epoch,
'train/step': global_step
}
# Add individual loss components
for k, v in loss_dict_reduced.items():
log_dict[f'train/loss_{k}'] = v.item()
wandb.log(log_dict, step=global_step)
# Step optimizer if there are remaining accumulated gradients at the end of epoch
if (i + 1) % gradient_accumulation_steps != 0:
if scaler is not None:
if max_norm > 0:
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm)
scaler.step(optimizer)
scaler.update()
else:
if max_norm > 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm)
optimizer.step()
optimizer.zero_grad()
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
# Final cleanup at end of epoch
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def evaluate(model: torch.nn.Module, criterion: torch.nn.Module, postprocessor, data_loader, coco_evaluator: CocoEvaluator, device):
model.eval()
criterion.eval()
coco_evaluator.cleanup()
metric_logger = MetricLogger(delimiter=" ")
# metric_logger.add_meter('class_error', SmoothedValue(window_size=1, fmt='{value:.2f}'))
header = 'Test:'
# iou_types = tuple(k for k in ('segm', 'bbox') if k in postprocessor.keys())
iou_types = coco_evaluator.iou_types
# coco_evaluator = CocoEvaluator(base_ds, iou_types)
# coco_evaluator.coco_eval[iou_types[0]].params.iouThrs = [0, 0.1, 0.5, 0.75]
for samples, targets in metric_logger.log_every(data_loader, 10, header):
samples = samples.to(device)
targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
outputs = model(samples)
orig_target_sizes = torch.stack([t["orig_size"] for t in targets], dim=0)
results = postprocessor(outputs, orig_target_sizes)
# if 'segm' in postprocessor.keys():
# target_sizes = torch.stack([t["size"] for t in targets], dim=0)
# results = postprocessor['segm'](results, outputs, orig_target_sizes, target_sizes)
res = {target['image_id'].item(): output for target, output in zip(targets, results)}
if coco_evaluator is not None:
coco_evaluator.update(res)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
if coco_evaluator is not None:
coco_evaluator.synchronize_between_processes()
# accumulate predictions from all images
if coco_evaluator is not None:
coco_evaluator.accumulate()
coco_evaluator.summarize()
stats = {}
# stats = {k: meter.global_avg for k, meter in metric_logger.meters.items()}
if coco_evaluator is not None:
if 'bbox' in iou_types:
stats['coco_eval_bbox'] = coco_evaluator.coco_eval['bbox'].stats.tolist()
if 'segm' in iou_types:
stats['coco_eval_masks'] = coco_evaluator.coco_eval['segm'].stats.tolist()
return stats, coco_evaluator
|