lucid-hf's picture
CI: deploy Docker/PDM Space
98a3af2 verified
#!/usr/bin/env python3
"""
Convert VTUAV_v1.0-001 dataset from Pascal VOC format to COCO format.
Dataset structure:
/mnt/archive/person_drone/VTUAV_v1.0-001/
β”œβ”€β”€ train/
β”‚ β”œβ”€β”€ rgb/
β”‚ β”œβ”€β”€ ir/
β”‚ └── anno/
└── test/
β”œβ”€β”€ rgb/
β”œβ”€β”€ ir/
└── anno/
Annotation format: Pascal VOC XML format
- XML files contain bounding box annotations with <xmin>, <ymin>, <xmax>, <ymax> coordinates
- Class names are numeric (0, 1, 2, 3) - need to map to meaningful names
- Both RGB and IR modalities available for each image
VTUAV appears to be a multi-class UAV detection dataset focusing on pedestrian detection.
Based on the sequence names, classes likely represent different object types in UAV imagery.
"""
import json
import os
import argparse
import xml.etree.ElementTree as ET
from pathlib import Path
from PIL import Image
from typing import Dict, List, Tuple
from datetime import datetime
import cv2
import numpy as np
import random
def get_vtuav_categories() -> Dict[str, Dict]:
"""
Get VTUAV category mapping.
Based on common UAV detection datasets, classes likely represent:
0: person/pedestrian (most common based on sequence names)
1: vehicle/car
2: bicycle/bike
3: other/background
"""
class_mapping = {
"0": {
"id": 1, # COCO categories start from 1
"name": "person",
"supercategory": "person"
},
"1": {
"id": 2,
"name": "vehicle",
"supercategory": "vehicle"
},
"2": {
"id": 3,
"name": "bicycle",
"supercategory": "vehicle"
},
"3": {
"id": 4,
"name": "other",
"supercategory": "other"
}
}
return class_mapping
def parse_voc_annotation(xml_file: str) -> Tuple[Dict, List[Dict]]:
"""
Parse Pascal VOC format XML annotation file.
Args:
xml_file: Path to XML annotation file
Returns:
image_info dict, list of annotation dicts
"""
# Default image info structure
default_image_info = {
'filename': "",
'width': 0,
'height': 0
}
if not os.path.exists(xml_file):
return default_image_info.copy(), []
try:
tree = ET.parse(xml_file)
root = tree.getroot()
# Get image information
filename = root.find('filename').text if root.find('filename') is not None else ""
size = root.find('size')
if size is not None:
width_elem = size.find('width')
height_elem = size.find('height')
width = int(width_elem.text) if width_elem is not None and width_elem.text else 0
height = int(height_elem.text) if height_elem is not None and height_elem.text else 0
else:
width = height = 0
image_info = {
'filename': filename,
'width': width,
'height': height
}
# Get object annotations
annotations = []
for obj in root.findall('object'):
name_elem = obj.find('name')
name = name_elem.text if name_elem is not None and name_elem.text else ""
# Get bounding box
bndbox = obj.find('bndbox')
if bndbox is not None:
try:
xmin_elem = bndbox.find('xmin')
ymin_elem = bndbox.find('ymin')
xmax_elem = bndbox.find('xmax')
ymax_elem = bndbox.find('ymax')
if all(elem is not None and elem.text for elem in [xmin_elem, ymin_elem, xmax_elem, ymax_elem]):
xmin = float(xmin_elem.text)
ymin = float(ymin_elem.text)
xmax = float(xmax_elem.text)
ymax = float(ymax_elem.text)
# Convert to COCO format: [x, y, width, height]
# Round coordinates to integers to reduce sub-pixel misalignments
x = round(xmin)
y = round(ymin)
width = round(xmax - xmin)
height = round(ymax - ymin)
# Skip invalid bboxes
if width <= 0 or height <= 0:
continue
annotations.append({
'class_name': name,
'bbox': [x, y, width, height],
'area': width * height
})
except (ValueError, TypeError) as e:
print(f"Warning: Could not parse bounding box in {xml_file}: {e}")
continue
return image_info, annotations
except (ET.ParseError, Exception) as e:
print(f"Warning: Could not parse XML file {xml_file}: {e}")
return default_image_info.copy(), []
def get_class_colors(category_mapping: Dict[str, Dict]) -> Dict[str, Tuple[int, int, int]]:
"""
Generate distinct colors for each class for visualization.
Args:
category_mapping: Mapping of class names to category info
Returns:
Dictionary mapping class names to BGR colors
"""
# Predefined colors for common classes (BGR format for OpenCV)
predefined_colors = {
"person": (0, 255, 0), # Green
"vehicle": (255, 0, 0), # Blue
"bicycle": (0, 165, 255), # Orange
"other": (128, 128, 128) # Gray
}
colors = {}
for class_name, category_info in category_mapping.items():
class_display_name = category_info["name"]
if class_display_name in predefined_colors:
colors[class_name] = predefined_colors[class_display_name]
else:
# Generate random color for unknown classes
colors[class_name] = (
random.randint(0, 255),
random.randint(0, 255),
random.randint(0, 255)
)
return colors
def visualize_annotations(
image_path: str,
annotations: List[Dict],
category_mapping: Dict[str, Dict],
class_colors: Dict[str, Tuple[int, int, int]],
show_labels: bool = True,
thickness: int = 2,
window_name: str = "VTUAV Annotations"
) -> np.ndarray:
"""
Visualize bounding box annotations on an image using OpenCV.
Args:
image_path: Path to the image file
annotations: List of annotation dictionaries with 'class_name' and 'bbox'
category_mapping: Mapping of class names to category info
class_colors: Dictionary mapping class names to BGR colors
output_path: Optional path to save the visualization
show_labels: Whether to show class labels on bounding boxes
thickness: Thickness of bounding box lines
display: Whether to display the image using cv2.imshow
window_name: Name of the display window
Returns:
Annotated image as numpy array
"""
# Load image
image = cv2.imread(image_path)
if image is None:
raise ValueError(f"Could not load image: {image_path}")
# Draw bounding boxes
for annotation in annotations:
class_name = annotation['class_name']
bbox = annotation['bbox'] # [x, y, width, height]
if class_name not in category_mapping:
continue
x, y, width, height = bbox
x1, y1 = int(x), int(y)
x2, y2 = int(x + width), int(y + height)
# Get color for this class
color = class_colors.get(class_name, (255, 255, 255)) # Default white
# Draw bounding box
cv2.rectangle(image, (x1, y1), (x2, y2), color, thickness)
if show_labels:
# Get class display name
class_display_name = category_mapping[class_name]["name"]
# Calculate text size for background rectangle
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = 0.6
text_thickness = 1
(text_width, text_height), baseline = cv2.getTextSize(
class_display_name, font, font_scale, text_thickness
)
# Draw background rectangle for text
cv2.rectangle(
image,
(x1, y1 - text_height - baseline - 5),
(x1 + text_width + 5, y1),
color,
-1 # Filled rectangle
)
# Draw text
cv2.putText(
image,
class_display_name,
(x1 + 2, y1 - baseline - 2),
font,
font_scale,
(255, 255, 255), # White text
text_thickness
)
height, width = image.shape[:2]
max_display_size = 1200
if max(height, width) > max_display_size:
scale = max_display_size / max(height, width)
new_width = int(width * scale)
new_height = int(height * scale)
display_image = cv2.resize(image, (new_width, new_height))
else:
display_image = image.copy()
cv2.imshow(window_name, display_image)
key = cv2.waitKey(0) & 0xFF
return image
def visualize_dataset_samples(
dataset_root: str,
split_name: str,
modality: str,
category_mapping: Dict[str, Dict],
output_dir: str,
random_seed: int = 42,
):
"""
Visualize random samples from the dataset with bounding box annotations.
Args:
dataset_root: Root directory of VTUAV dataset
split_name: Name of the split (train/test)
modality: Modality to use ('rgb' or 'ir')
category_mapping: Mapping of class names to category info
output_dir: Directory to save visualization images
random_seed: Random seed for reproducible sampling
"""
random.seed(random_seed)
np.random.seed(random_seed)
dataset_root = Path(dataset_root)
images_dir = dataset_root / split_name / modality
annotations_dir = dataset_root / split_name / "anno"
output_dir = Path(output_dir)
if not images_dir.exists() or not annotations_dir.exists():
print(f"Warning: Missing images or annotations directory for {split_name} {modality}")
return
# Create output directory
vis_output_dir = output_dir / f"visualizations_{split_name}_{modality}"
vis_output_dir.mkdir(parents=True, exist_ok=True)
# Get all image files
image_extensions = {'.jpg', '.jpeg', '.png', '.bmp'}
image_files = []
for ext in image_extensions:
image_files.extend(images_dir.glob(f"*{ext}"))
image_files.extend(images_dir.glob(f"*{ext.upper()}"))
image_files = sorted(image_files)
if len(image_files) == 0:
print(f"No images found in {images_dir}")
return
# Sample random images
num_samples = len(image_files)
sampled_files = random.sample(image_files, num_samples)
# Get class colors
class_colors = get_class_colors(category_mapping)
print(f"Visualizing {num_samples} random samples from {split_name} {modality}...")
print(f"Class colors: {[(name, category_mapping[name]['name'], color) for name, color in class_colors.items()]}")
for i, img_file in enumerate(sampled_files):
# Get corresponding annotation file
annotation_file = annotations_dir / f"{img_file.stem}.xml"
if not annotation_file.exists():
print(f"Warning: No annotation file found for {img_file}, skipping")
continue
# Parse annotations
image_info, annotations = parse_voc_annotation(str(annotation_file))
if len(annotations) == 0:
print(f"Warning: No annotations found for {img_file}, skipping")
continue
window_name = f"VTUAV {split_name} {modality} - Sample {i+1}/{num_samples}"
try:
visualize_annotations(
str(img_file),
annotations,
category_mapping,
class_colors,
show_labels=True,
thickness=2,
window_name=window_name
)
print(f"Displayed {img_file.name} ({len(annotations)} annotations)")
if cv2.getWindowProperty(window_name, cv2.WND_PROP_VISIBLE) < 1:
break
except Exception as e:
print(f"Error visualizing {img_file}: {e}")
continue
cv2.destroyAllWindows()
print(f"Interactive visualization complete!")
def convert_split_to_coco(
dataset_root: str,
split_name: str,
modality: str,
category_mapping: Dict[str, Dict],
start_img_id: int = 1,
start_ann_id: int = 1
) -> Tuple[List[Dict], List[Dict], int, int]:
"""
Convert a VTUAV dataset split and modality to COCO format components.
Args:
dataset_root: Root directory of VTUAV dataset
split_name: Name of the split (train/test)
modality: Modality to use ('rgb' or 'ir')
category_mapping: Mapping of class names to category info
start_img_id: Starting image ID for this split
start_ann_id: Starting annotation ID for this split
Returns:
images_list, annotations_list, next_img_id, next_ann_id
"""
dataset_root = Path(dataset_root)
images_dir = dataset_root / split_name / modality
annotations_dir = dataset_root / split_name / "anno"
if not images_dir.exists() or not annotations_dir.exists():
print(f"Warning: Missing images or annotations directory for {split_name} {modality}")
return [], [], start_img_id, start_ann_id
images_list = []
annotations_list = []
img_id = start_img_id
ann_id = start_ann_id
# Get all image files
image_extensions = {'.jpg', '.jpeg', '.png', '.bmp'}
image_files = []
for ext in image_extensions:
image_files.extend(images_dir.glob(f"*{ext}"))
image_files.extend(images_dir.glob(f"*{ext.upper()}"))
image_files = sorted(image_files)
print(f"Processing {len(image_files)} images in {split_name} split ({modality} modality)...")
for img_file in image_files:
# Get corresponding annotation file
annotation_file = annotations_dir / f"{img_file.stem}.xml"
# Parse XML annotation
if not annotation_file.exists():
print(f"Warning: No annotation file found for {img_file}, skipping")
continue
image_info, annotations = parse_voc_annotation(str(annotation_file))
# Verify image dimensions by opening the image
try:
with Image.open(img_file) as img:
actual_width, actual_height = img.size
assert actual_width == image_info['width'] and actual_height == image_info['height']
# # Use actual dimensions if XML dimensions are missing or incorrect
# if image_info.get('width', 0) == 0 or image_info.get('height', 0) == 0:
# image_info['width'] = actual_width
# image_info['height'] = actual_height
except Exception as e:
print(f"Error opening image {img_file}: {e}")
# Try to get dimensions from XML, if that fails too, skip this image
if image_info.get('width', 0) == 0 or image_info.get('height', 0) == 0:
print(f"Skipping {img_file} - no valid dimensions available")
continue
# Add image info with modality prefix to avoid filename conflicts
relative_path = f"{split_name}_{modality}_images/{img_file.name}"
images_list.append({
"id": img_id,
"file_name": relative_path,
"width": image_info['width'],
"height": image_info['height'],
"license": 1,
"modality": modality # Add modality info
})
# Process annotations
for annotation in annotations:
class_name = annotation['class_name']
# Skip unknown classes
if class_name not in category_mapping:
print(f"Warning: Unknown class '{class_name}' in {annotation_file}")
continue
bbox = annotation['bbox']
x, y, width, height = bbox
# Ensure bbox is within image bounds
x = max(0, min(x, image_info['width'] - 1))
y = max(0, min(y, image_info['height'] - 1))
width = min(width, image_info['width'] - x)
height = min(height, image_info['height'] - y)
# Skip invalid bboxes
if width <= 0 or height <= 0:
continue
area = width * height
annotations_list.append({
"id": ann_id,
"image_id": img_id,
"category_id": category_mapping[class_name]["id"],
"bbox": [x, y, width, height],
"area": area,
"iscrowd": 0,
"segmentation": [],
"modality": modality # Add modality info
})
ann_id += 1
img_id += 1
return images_list, annotations_list, img_id, ann_id
def main():
parser = argparse.ArgumentParser(description="Convert VTUAV dataset to COCO format")
parser.add_argument(
"--dataset_root",
type=str,
default="/mnt/archive/person_drone/VTUAV_v1.0-001",
help="Path to VTUAV dataset root directory"
)
parser.add_argument(
"--output_dir",
type=str,
default="/home/svakhreev/projects/DEIM/data/vtuav_coco",
help="Output directory for COCO format files"
)
parser.add_argument(
"--modalities",
type=str,
nargs='+',
default=["rgb", "ir"],
choices=["rgb", "ir"],
help="Modalities to convert (default: both rgb and ir)"
)
parser.add_argument(
"--visualize",
action="store_true",
help="Generate visualization samples with bounding boxes"
)
args = parser.parse_args()
dataset_root = Path(args.dataset_root)
output_dir = Path(args.output_dir)
# Create output directory
output_dir.mkdir(parents=True, exist_ok=True)
# Get category mapping
category_mapping = get_vtuav_categories()
print(f"Categories: {category_mapping}")
print(f"Converting modalities: {args.modalities}")
# Initialize combined COCO data structure
coco_data = {
"info": {
"year": 2024,
"version": "1.0",
"description": "VTUAV Dataset v1.0-001 - Combined train/test splits (RGB+IR modalities) in COCO format",
"contributor": "VTUAV Dataset",
"url": "",
"date_created": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
},
"licenses": [
{
"id": 1,
"name": "Academic Use",
"url": ""
}
],
"categories": list(category_mapping.values()),
"images": [],
"annotations": []
}
# Process each split and modality combination
splits = ["train", "test"]
img_id = 1
ann_id = 1
for split in splits:
print(f"\nConverting {split} split...")
for modality in args.modalities:
split_images_dir = dataset_root / split / modality
if not split_images_dir.exists():
print(f"Warning: {split_images_dir} does not exist, skipping {split} {modality}")
continue
images_list, annotations_list, next_img_id, next_ann_id = convert_split_to_coco(
str(dataset_root),
split,
modality,
category_mapping,
img_id,
ann_id
)
# Add to combined dataset
coco_data["images"].extend(images_list)
coco_data["annotations"].extend(annotations_list)
# Update IDs for next modality/split
img_id = next_img_id
ann_id = next_ann_id
print(f"Added {len(images_list)} images and {len(annotations_list)} annotations from {split} {modality}")
# Save unified COCO annotation file
output_file = output_dir / "annotations.json"
with open(output_file, 'w') as f:
json.dump(coco_data, f, indent=2)
print(f"\nConversion complete!")
print(f"Total: {len(coco_data['images'])} images and {len(coco_data['annotations'])} annotations")
print(f"Saved unified COCO format to {output_file}")
# Create symlinks to original image directories for easy access
for split in splits:
for modality in args.modalities:
original_images_dir = dataset_root / split / modality
symlink_dir = output_dir / f"{split}_{modality}_images"
if original_images_dir.exists() and not symlink_dir.exists():
try:
symlink_dir.symlink_to(original_images_dir.resolve())
print(f"Created symlink: {symlink_dir} -> {original_images_dir}")
except Exception as e:
print(f"Warning: Could not create symlink for {split} {modality}: {e}")
# Save dataset information for reference
info_file = output_dir / "dataset_info.json"
# Calculate class distribution
class_distribution = {}
for annotation in coco_data["annotations"]:
cat_id = annotation["category_id"]
cat_name = next(cat["name"] for cat in coco_data["categories"] if cat["id"] == cat_id)
class_distribution[cat_name] = class_distribution.get(cat_name, 0) + 1
with open(info_file, 'w') as f:
json.dump({
'modalities': args.modalities,
'splits_processed': [(split, modality) for split in splits for modality in args.modalities
if (dataset_root / split / modality).exists()],
'total_images': len(coco_data['images']),
'total_annotations': len(coco_data['annotations']),
'class_distribution': class_distribution,
'categories': category_mapping,
'args': vars(args)
}, f, indent=2)
print(f"Dataset info saved to {info_file}")
print(f"Class distribution: {class_distribution}")
# Generate visualizations if requested
if args.visualize:
for split in splits:
for modality in args.modalities:
split_images_dir = dataset_root / split / modality
if split_images_dir.exists():
visualize_dataset_samples(
str(dataset_root),
split,
modality,
category_mapping,
str(output_dir),
)
print("Visualization generation complete!")
if __name__ == "__main__":
main()