#!/usr/bin/env python3 """ Convert VTUAV_v1.0-001 dataset from Pascal VOC format to COCO format. Dataset structure: /mnt/archive/person_drone/VTUAV_v1.0-001/ ├── train/ │ ├── rgb/ │ ├── ir/ │ └── anno/ └── test/ ├── rgb/ ├── ir/ └── anno/ Annotation format: Pascal VOC XML format - XML files contain bounding box annotations with , , , coordinates - Class names are numeric (0, 1, 2, 3) - need to map to meaningful names - Both RGB and IR modalities available for each image VTUAV appears to be a multi-class UAV detection dataset focusing on pedestrian detection. Based on the sequence names, classes likely represent different object types in UAV imagery. """ import json import os import argparse import xml.etree.ElementTree as ET from pathlib import Path from PIL import Image from typing import Dict, List, Tuple from datetime import datetime import cv2 import numpy as np import random def get_vtuav_categories() -> Dict[str, Dict]: """ Get VTUAV category mapping. Based on common UAV detection datasets, classes likely represent: 0: person/pedestrian (most common based on sequence names) 1: vehicle/car 2: bicycle/bike 3: other/background """ class_mapping = { "0": { "id": 1, # COCO categories start from 1 "name": "person", "supercategory": "person" }, "1": { "id": 2, "name": "vehicle", "supercategory": "vehicle" }, "2": { "id": 3, "name": "bicycle", "supercategory": "vehicle" }, "3": { "id": 4, "name": "other", "supercategory": "other" } } return class_mapping def parse_voc_annotation(xml_file: str) -> Tuple[Dict, List[Dict]]: """ Parse Pascal VOC format XML annotation file. Args: xml_file: Path to XML annotation file Returns: image_info dict, list of annotation dicts """ # Default image info structure default_image_info = { 'filename': "", 'width': 0, 'height': 0 } if not os.path.exists(xml_file): return default_image_info.copy(), [] try: tree = ET.parse(xml_file) root = tree.getroot() # Get image information filename = root.find('filename').text if root.find('filename') is not None else "" size = root.find('size') if size is not None: width_elem = size.find('width') height_elem = size.find('height') width = int(width_elem.text) if width_elem is not None and width_elem.text else 0 height = int(height_elem.text) if height_elem is not None and height_elem.text else 0 else: width = height = 0 image_info = { 'filename': filename, 'width': width, 'height': height } # Get object annotations annotations = [] for obj in root.findall('object'): name_elem = obj.find('name') name = name_elem.text if name_elem is not None and name_elem.text else "" # Get bounding box bndbox = obj.find('bndbox') if bndbox is not None: try: xmin_elem = bndbox.find('xmin') ymin_elem = bndbox.find('ymin') xmax_elem = bndbox.find('xmax') ymax_elem = bndbox.find('ymax') if all(elem is not None and elem.text for elem in [xmin_elem, ymin_elem, xmax_elem, ymax_elem]): xmin = float(xmin_elem.text) ymin = float(ymin_elem.text) xmax = float(xmax_elem.text) ymax = float(ymax_elem.text) # Convert to COCO format: [x, y, width, height] # Round coordinates to integers to reduce sub-pixel misalignments x = round(xmin) y = round(ymin) width = round(xmax - xmin) height = round(ymax - ymin) # Skip invalid bboxes if width <= 0 or height <= 0: continue annotations.append({ 'class_name': name, 'bbox': [x, y, width, height], 'area': width * height }) except (ValueError, TypeError) as e: print(f"Warning: Could not parse bounding box in {xml_file}: {e}") continue return image_info, annotations except (ET.ParseError, Exception) as e: print(f"Warning: Could not parse XML file {xml_file}: {e}") return default_image_info.copy(), [] def get_class_colors(category_mapping: Dict[str, Dict]) -> Dict[str, Tuple[int, int, int]]: """ Generate distinct colors for each class for visualization. Args: category_mapping: Mapping of class names to category info Returns: Dictionary mapping class names to BGR colors """ # Predefined colors for common classes (BGR format for OpenCV) predefined_colors = { "person": (0, 255, 0), # Green "vehicle": (255, 0, 0), # Blue "bicycle": (0, 165, 255), # Orange "other": (128, 128, 128) # Gray } colors = {} for class_name, category_info in category_mapping.items(): class_display_name = category_info["name"] if class_display_name in predefined_colors: colors[class_name] = predefined_colors[class_display_name] else: # Generate random color for unknown classes colors[class_name] = ( random.randint(0, 255), random.randint(0, 255), random.randint(0, 255) ) return colors def visualize_annotations( image_path: str, annotations: List[Dict], category_mapping: Dict[str, Dict], class_colors: Dict[str, Tuple[int, int, int]], show_labels: bool = True, thickness: int = 2, window_name: str = "VTUAV Annotations" ) -> np.ndarray: """ Visualize bounding box annotations on an image using OpenCV. Args: image_path: Path to the image file annotations: List of annotation dictionaries with 'class_name' and 'bbox' category_mapping: Mapping of class names to category info class_colors: Dictionary mapping class names to BGR colors output_path: Optional path to save the visualization show_labels: Whether to show class labels on bounding boxes thickness: Thickness of bounding box lines display: Whether to display the image using cv2.imshow window_name: Name of the display window Returns: Annotated image as numpy array """ # Load image image = cv2.imread(image_path) if image is None: raise ValueError(f"Could not load image: {image_path}") # Draw bounding boxes for annotation in annotations: class_name = annotation['class_name'] bbox = annotation['bbox'] # [x, y, width, height] if class_name not in category_mapping: continue x, y, width, height = bbox x1, y1 = int(x), int(y) x2, y2 = int(x + width), int(y + height) # Get color for this class color = class_colors.get(class_name, (255, 255, 255)) # Default white # Draw bounding box cv2.rectangle(image, (x1, y1), (x2, y2), color, thickness) if show_labels: # Get class display name class_display_name = category_mapping[class_name]["name"] # Calculate text size for background rectangle font = cv2.FONT_HERSHEY_SIMPLEX font_scale = 0.6 text_thickness = 1 (text_width, text_height), baseline = cv2.getTextSize( class_display_name, font, font_scale, text_thickness ) # Draw background rectangle for text cv2.rectangle( image, (x1, y1 - text_height - baseline - 5), (x1 + text_width + 5, y1), color, -1 # Filled rectangle ) # Draw text cv2.putText( image, class_display_name, (x1 + 2, y1 - baseline - 2), font, font_scale, (255, 255, 255), # White text text_thickness ) height, width = image.shape[:2] max_display_size = 1200 if max(height, width) > max_display_size: scale = max_display_size / max(height, width) new_width = int(width * scale) new_height = int(height * scale) display_image = cv2.resize(image, (new_width, new_height)) else: display_image = image.copy() cv2.imshow(window_name, display_image) key = cv2.waitKey(0) & 0xFF return image def visualize_dataset_samples( dataset_root: str, split_name: str, modality: str, category_mapping: Dict[str, Dict], output_dir: str, random_seed: int = 42, ): """ Visualize random samples from the dataset with bounding box annotations. Args: dataset_root: Root directory of VTUAV dataset split_name: Name of the split (train/test) modality: Modality to use ('rgb' or 'ir') category_mapping: Mapping of class names to category info output_dir: Directory to save visualization images random_seed: Random seed for reproducible sampling """ random.seed(random_seed) np.random.seed(random_seed) dataset_root = Path(dataset_root) images_dir = dataset_root / split_name / modality annotations_dir = dataset_root / split_name / "anno" output_dir = Path(output_dir) if not images_dir.exists() or not annotations_dir.exists(): print(f"Warning: Missing images or annotations directory for {split_name} {modality}") return # Create output directory vis_output_dir = output_dir / f"visualizations_{split_name}_{modality}" vis_output_dir.mkdir(parents=True, exist_ok=True) # Get all image files image_extensions = {'.jpg', '.jpeg', '.png', '.bmp'} image_files = [] for ext in image_extensions: image_files.extend(images_dir.glob(f"*{ext}")) image_files.extend(images_dir.glob(f"*{ext.upper()}")) image_files = sorted(image_files) if len(image_files) == 0: print(f"No images found in {images_dir}") return # Sample random images num_samples = len(image_files) sampled_files = random.sample(image_files, num_samples) # Get class colors class_colors = get_class_colors(category_mapping) print(f"Visualizing {num_samples} random samples from {split_name} {modality}...") print(f"Class colors: {[(name, category_mapping[name]['name'], color) for name, color in class_colors.items()]}") for i, img_file in enumerate(sampled_files): # Get corresponding annotation file annotation_file = annotations_dir / f"{img_file.stem}.xml" if not annotation_file.exists(): print(f"Warning: No annotation file found for {img_file}, skipping") continue # Parse annotations image_info, annotations = parse_voc_annotation(str(annotation_file)) if len(annotations) == 0: print(f"Warning: No annotations found for {img_file}, skipping") continue window_name = f"VTUAV {split_name} {modality} - Sample {i+1}/{num_samples}" try: visualize_annotations( str(img_file), annotations, category_mapping, class_colors, show_labels=True, thickness=2, window_name=window_name ) print(f"Displayed {img_file.name} ({len(annotations)} annotations)") if cv2.getWindowProperty(window_name, cv2.WND_PROP_VISIBLE) < 1: break except Exception as e: print(f"Error visualizing {img_file}: {e}") continue cv2.destroyAllWindows() print(f"Interactive visualization complete!") def convert_split_to_coco( dataset_root: str, split_name: str, modality: str, category_mapping: Dict[str, Dict], start_img_id: int = 1, start_ann_id: int = 1 ) -> Tuple[List[Dict], List[Dict], int, int]: """ Convert a VTUAV dataset split and modality to COCO format components. Args: dataset_root: Root directory of VTUAV dataset split_name: Name of the split (train/test) modality: Modality to use ('rgb' or 'ir') category_mapping: Mapping of class names to category info start_img_id: Starting image ID for this split start_ann_id: Starting annotation ID for this split Returns: images_list, annotations_list, next_img_id, next_ann_id """ dataset_root = Path(dataset_root) images_dir = dataset_root / split_name / modality annotations_dir = dataset_root / split_name / "anno" if not images_dir.exists() or not annotations_dir.exists(): print(f"Warning: Missing images or annotations directory for {split_name} {modality}") return [], [], start_img_id, start_ann_id images_list = [] annotations_list = [] img_id = start_img_id ann_id = start_ann_id # Get all image files image_extensions = {'.jpg', '.jpeg', '.png', '.bmp'} image_files = [] for ext in image_extensions: image_files.extend(images_dir.glob(f"*{ext}")) image_files.extend(images_dir.glob(f"*{ext.upper()}")) image_files = sorted(image_files) print(f"Processing {len(image_files)} images in {split_name} split ({modality} modality)...") for img_file in image_files: # Get corresponding annotation file annotation_file = annotations_dir / f"{img_file.stem}.xml" # Parse XML annotation if not annotation_file.exists(): print(f"Warning: No annotation file found for {img_file}, skipping") continue image_info, annotations = parse_voc_annotation(str(annotation_file)) # Verify image dimensions by opening the image try: with Image.open(img_file) as img: actual_width, actual_height = img.size assert actual_width == image_info['width'] and actual_height == image_info['height'] # # Use actual dimensions if XML dimensions are missing or incorrect # if image_info.get('width', 0) == 0 or image_info.get('height', 0) == 0: # image_info['width'] = actual_width # image_info['height'] = actual_height except Exception as e: print(f"Error opening image {img_file}: {e}") # Try to get dimensions from XML, if that fails too, skip this image if image_info.get('width', 0) == 0 or image_info.get('height', 0) == 0: print(f"Skipping {img_file} - no valid dimensions available") continue # Add image info with modality prefix to avoid filename conflicts relative_path = f"{split_name}_{modality}_images/{img_file.name}" images_list.append({ "id": img_id, "file_name": relative_path, "width": image_info['width'], "height": image_info['height'], "license": 1, "modality": modality # Add modality info }) # Process annotations for annotation in annotations: class_name = annotation['class_name'] # Skip unknown classes if class_name not in category_mapping: print(f"Warning: Unknown class '{class_name}' in {annotation_file}") continue bbox = annotation['bbox'] x, y, width, height = bbox # Ensure bbox is within image bounds x = max(0, min(x, image_info['width'] - 1)) y = max(0, min(y, image_info['height'] - 1)) width = min(width, image_info['width'] - x) height = min(height, image_info['height'] - y) # Skip invalid bboxes if width <= 0 or height <= 0: continue area = width * height annotations_list.append({ "id": ann_id, "image_id": img_id, "category_id": category_mapping[class_name]["id"], "bbox": [x, y, width, height], "area": area, "iscrowd": 0, "segmentation": [], "modality": modality # Add modality info }) ann_id += 1 img_id += 1 return images_list, annotations_list, img_id, ann_id def main(): parser = argparse.ArgumentParser(description="Convert VTUAV dataset to COCO format") parser.add_argument( "--dataset_root", type=str, default="/mnt/archive/person_drone/VTUAV_v1.0-001", help="Path to VTUAV dataset root directory" ) parser.add_argument( "--output_dir", type=str, default="/home/svakhreev/projects/DEIM/data/vtuav_coco", help="Output directory for COCO format files" ) parser.add_argument( "--modalities", type=str, nargs='+', default=["rgb", "ir"], choices=["rgb", "ir"], help="Modalities to convert (default: both rgb and ir)" ) parser.add_argument( "--visualize", action="store_true", help="Generate visualization samples with bounding boxes" ) args = parser.parse_args() dataset_root = Path(args.dataset_root) output_dir = Path(args.output_dir) # Create output directory output_dir.mkdir(parents=True, exist_ok=True) # Get category mapping category_mapping = get_vtuav_categories() print(f"Categories: {category_mapping}") print(f"Converting modalities: {args.modalities}") # Initialize combined COCO data structure coco_data = { "info": { "year": 2024, "version": "1.0", "description": "VTUAV Dataset v1.0-001 - Combined train/test splits (RGB+IR modalities) in COCO format", "contributor": "VTUAV Dataset", "url": "", "date_created": datetime.now().strftime("%Y-%m-%d %H:%M:%S") }, "licenses": [ { "id": 1, "name": "Academic Use", "url": "" } ], "categories": list(category_mapping.values()), "images": [], "annotations": [] } # Process each split and modality combination splits = ["train", "test"] img_id = 1 ann_id = 1 for split in splits: print(f"\nConverting {split} split...") for modality in args.modalities: split_images_dir = dataset_root / split / modality if not split_images_dir.exists(): print(f"Warning: {split_images_dir} does not exist, skipping {split} {modality}") continue images_list, annotations_list, next_img_id, next_ann_id = convert_split_to_coco( str(dataset_root), split, modality, category_mapping, img_id, ann_id ) # Add to combined dataset coco_data["images"].extend(images_list) coco_data["annotations"].extend(annotations_list) # Update IDs for next modality/split img_id = next_img_id ann_id = next_ann_id print(f"Added {len(images_list)} images and {len(annotations_list)} annotations from {split} {modality}") # Save unified COCO annotation file output_file = output_dir / "annotations.json" with open(output_file, 'w') as f: json.dump(coco_data, f, indent=2) print(f"\nConversion complete!") print(f"Total: {len(coco_data['images'])} images and {len(coco_data['annotations'])} annotations") print(f"Saved unified COCO format to {output_file}") # Create symlinks to original image directories for easy access for split in splits: for modality in args.modalities: original_images_dir = dataset_root / split / modality symlink_dir = output_dir / f"{split}_{modality}_images" if original_images_dir.exists() and not symlink_dir.exists(): try: symlink_dir.symlink_to(original_images_dir.resolve()) print(f"Created symlink: {symlink_dir} -> {original_images_dir}") except Exception as e: print(f"Warning: Could not create symlink for {split} {modality}: {e}") # Save dataset information for reference info_file = output_dir / "dataset_info.json" # Calculate class distribution class_distribution = {} for annotation in coco_data["annotations"]: cat_id = annotation["category_id"] cat_name = next(cat["name"] for cat in coco_data["categories"] if cat["id"] == cat_id) class_distribution[cat_name] = class_distribution.get(cat_name, 0) + 1 with open(info_file, 'w') as f: json.dump({ 'modalities': args.modalities, 'splits_processed': [(split, modality) for split in splits for modality in args.modalities if (dataset_root / split / modality).exists()], 'total_images': len(coco_data['images']), 'total_annotations': len(coco_data['annotations']), 'class_distribution': class_distribution, 'categories': category_mapping, 'args': vars(args) }, f, indent=2) print(f"Dataset info saved to {info_file}") print(f"Class distribution: {class_distribution}") # Generate visualizations if requested if args.visualize: for split in splits: for modality in args.modalities: split_images_dir = dataset_root / split / modality if split_images_dir.exists(): visualize_dataset_samples( str(dataset_root), split, modality, category_mapping, str(output_dir), ) print("Visualization generation complete!") if __name__ == "__main__": main()