likhonsheikhdev's picture
Upload folder using huggingface_hub
1ea9642 verified
raw
history blame
18.6 kB
"""
Docker Model Runner - Anthropic API Compatible
Full compatibility with Anthropic Messages API + Interleaved Thinking
Optimized for: 2 vCPU, 16GB RAM
"""
from fastapi import FastAPI, HTTPException, Header, Request
from fastapi.responses import StreamingResponse, HTMLResponse, FileResponse
from fastapi.staticfiles import StaticFiles
from pydantic import BaseModel, Field
from typing import Optional, List, Union, Literal, Any, Dict
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import os
from datetime import datetime
from contextlib import asynccontextmanager
import uuid
import time
import json
import asyncio
import re
# CPU-optimized lightweight models
GENERATOR_MODEL = os.getenv("GENERATOR_MODEL", "distilgpt2")
MODEL_DISPLAY_NAME = os.getenv("MODEL_NAME", "MiniMax-M2")
# Set CPU threading
torch.set_num_threads(2)
# Global model cache
models = {}
def load_models():
"""Pre-load models for faster inference"""
global models
print("Loading models for CPU inference...")
models["tokenizer"] = AutoTokenizer.from_pretrained(GENERATOR_MODEL)
models["model"] = AutoModelForCausalLM.from_pretrained(GENERATOR_MODEL)
models["model"].eval()
if models["tokenizer"].pad_token is None:
models["tokenizer"].pad_token = models["tokenizer"].eos_token
print("✅ All models loaded successfully!")
@asynccontextmanager
async def lifespan(app: FastAPI):
load_models()
yield
models.clear()
app = FastAPI(
title="Model Runner",
description="Anthropic API Compatible with Interleaved Thinking",
version="1.0.0",
lifespan=lifespan,
docs_url="/api/docs",
redoc_url="/api/redoc"
)
# ============== Anthropic API Models ==============
class TextBlock(BaseModel):
type: Literal["text"] = "text"
text: str
class ThinkingBlock(BaseModel):
type: Literal["thinking"] = "thinking"
thinking: str
class SignatureBlock(BaseModel):
type: Literal["signature"] = "signature"
signature: str
class ToolUseBlock(BaseModel):
type: Literal["tool_use"] = "tool_use"
id: str
name: str
input: Dict[str, Any]
class ToolResultContent(BaseModel):
type: Literal["tool_result"] = "tool_result"
tool_use_id: str
content: Union[str, List[TextBlock]]
is_error: Optional[bool] = False
class ImageSource(BaseModel):
type: Literal["base64", "url"]
media_type: Optional[str] = None
data: Optional[str] = None
url: Optional[str] = None
class ImageBlock(BaseModel):
type: Literal["image"] = "image"
source: ImageSource
ContentBlock = Union[TextBlock, ThinkingBlock, SignatureBlock, ToolUseBlock, ToolResultContent, ImageBlock, str]
class MessageParam(BaseModel):
role: Literal["user", "assistant"]
content: Union[str, List[ContentBlock]]
class ToolInputSchema(BaseModel):
type: str = "object"
properties: Optional[Dict[str, Any]] = None
required: Optional[List[str]] = None
class Tool(BaseModel):
name: str
description: str
input_schema: ToolInputSchema
class ToolChoice(BaseModel):
type: Literal["auto", "any", "tool"] = "auto"
name: Optional[str] = None
disable_parallel_tool_use: Optional[bool] = False
class ThinkingConfig(BaseModel):
type: Literal["enabled", "disabled"] = "disabled"
budget_tokens: Optional[int] = None
class Metadata(BaseModel):
user_id: Optional[str] = None
class AnthropicRequest(BaseModel):
model: str = "MiniMax-M2"
messages: List[MessageParam]
max_tokens: int = 1024
temperature: Optional[float] = Field(default=1.0, gt=0.0, le=1.0)
top_p: Optional[float] = Field(default=1.0, gt=0.0, le=1.0)
top_k: Optional[int] = None
stop_sequences: Optional[List[str]] = None
stream: Optional[bool] = False
system: Optional[Union[str, List[TextBlock]]] = None
tools: Optional[List[Tool]] = None
tool_choice: Optional[Union[ToolChoice, Dict[str, Any]]] = None
metadata: Optional[Metadata] = None
thinking: Optional[ThinkingConfig] = None
service_tier: Optional[str] = None
class Usage(BaseModel):
input_tokens: int
output_tokens: int
cache_creation_input_tokens: Optional[int] = 0
cache_read_input_tokens: Optional[int] = 0
class AnthropicResponse(BaseModel):
id: str
type: Literal["message"] = "message"
role: Literal["assistant"] = "assistant"
content: List[Union[TextBlock, ThinkingBlock, SignatureBlock, ToolUseBlock]]
model: str
stop_reason: Optional[Literal["end_turn", "max_tokens", "stop_sequence", "tool_use"]] = "end_turn"
stop_sequence: Optional[str] = None
usage: Usage
# ============== Helper Functions ==============
def extract_text_from_content(content: Union[str, List[ContentBlock]]) -> str:
if isinstance(content, str):
return content
texts = []
for block in content:
if isinstance(block, str):
texts.append(block)
elif hasattr(block, 'text'):
texts.append(block.text)
elif hasattr(block, 'thinking'):
texts.append(block.thinking)
elif isinstance(block, dict):
if block.get('type') == 'text':
texts.append(block.get('text', ''))
elif block.get('type') == 'thinking':
texts.append(block.get('thinking', ''))
return " ".join(texts)
def format_system_prompt(system: Optional[Union[str, List[TextBlock]]]) -> str:
if system is None:
return ""
if isinstance(system, str):
return system
return " ".join([block.text for block in system if hasattr(block, 'text')])
def format_messages_to_prompt(messages: List[MessageParam], system: Optional[Union[str, List[TextBlock]]] = None, include_thinking: bool = False) -> str:
prompt_parts = []
system_text = format_system_prompt(system)
if system_text:
prompt_parts.append(f"System: {system_text}\n\n")
for msg in messages:
role = msg.role
content = msg.content
if isinstance(content, list):
for block in content:
if isinstance(block, dict):
block_type = block.get('type', 'text')
if block_type == 'thinking' and include_thinking:
prompt_parts.append(f"<thinking>{block.get('thinking', '')}</thinking>\n")
elif block_type == 'text':
if role == "user":
prompt_parts.append(f"Human: {block.get('text', '')}\n\n")
else:
prompt_parts.append(f"Assistant: {block.get('text', '')}\n\n")
elif hasattr(block, 'type'):
if block.type == 'thinking' and include_thinking:
prompt_parts.append(f"<thinking>{block.thinking}</thinking>\n")
elif block.type == 'text':
if role == "user":
prompt_parts.append(f"Human: {block.text}\n\n")
else:
prompt_parts.append(f"Assistant: {block.text}\n\n")
else:
content_text = content if isinstance(content, str) else extract_text_from_content(content)
if role == "user":
prompt_parts.append(f"Human: {content_text}\n\n")
elif role == "assistant":
prompt_parts.append(f"Assistant: {content_text}\n\n")
prompt_parts.append("Assistant:")
return "".join(prompt_parts)
def generate_text(prompt: str, max_tokens: int, temperature: float, top_p: float) -> tuple:
tokenizer = models["tokenizer"]
model = models["model"]
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
input_tokens = inputs["input_ids"].shape[1]
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=min(max_tokens, 256),
temperature=temperature if temperature > 0 else 1.0,
top_p=top_p,
do_sample=temperature > 0,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id
)
generated_tokens = outputs[0][input_tokens:]
output_tokens = len(generated_tokens)
generated_text = tokenizer.decode(generated_tokens, skip_special_tokens=True)
return generated_text.strip(), input_tokens, output_tokens
def generate_thinking(prompt: str, budget_tokens: int = 100) -> tuple:
tokenizer = models["tokenizer"]
model = models["model"]
thinking_prompt = f"{prompt}\n\nLet me think through this step by step:\n"
inputs = tokenizer(thinking_prompt, return_tensors="pt", truncation=True, max_length=512)
input_tokens = inputs["input_ids"].shape[1]
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=min(budget_tokens, 128),
temperature=0.7,
top_p=0.9,
do_sample=True,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id
)
generated_tokens = outputs[0][input_tokens:]
thinking_tokens = len(generated_tokens)
thinking_text = tokenizer.decode(generated_tokens, skip_special_tokens=True)
return thinking_text.strip(), thinking_tokens
async def generate_stream_with_thinking(prompt: str, max_tokens: int, temperature: float, top_p: float, message_id: str, model_name: str, thinking_enabled: bool = False, thinking_budget: int = 100):
tokenizer = models["tokenizer"]
model = models["model"]
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
input_tokens = inputs["input_ids"].shape[1]
total_output_tokens = 0
message_start = {
"type": "message_start",
"message": {"id": message_id, "type": "message", "role": "assistant", "content": [], "model": model_name, "stop_reason": None, "stop_sequence": None, "usage": {"input_tokens": input_tokens, "output_tokens": 0}}
}
yield f"event: message_start\ndata: {json.dumps(message_start)}\n\n"
content_index = 0
if thinking_enabled:
thinking_block_start = {"type": "content_block_start", "index": content_index, "content_block": {"type": "thinking", "thinking": ""}}
yield f"event: content_block_start\ndata: {json.dumps(thinking_block_start)}\n\n"
thinking_text, thinking_tokens = generate_thinking(prompt, thinking_budget)
total_output_tokens += thinking_tokens
for i in range(0, len(thinking_text), 10):
chunk = thinking_text[i:i+10]
yield f"event: content_block_delta\ndata: {json.dumps({'type': 'content_block_delta', 'index': content_index, 'delta': {'type': 'thinking_delta', 'thinking': chunk}})}\n\n"
await asyncio.sleep(0.01)
yield f"event: content_block_stop\ndata: {json.dumps({'type': 'content_block_stop', 'index': content_index})}\n\n"
content_index += 1
yield f"event: content_block_start\ndata: {json.dumps({'type': 'content_block_start', 'index': content_index, 'content_block': {'type': 'text', 'text': ''}})}\n\n"
with torch.no_grad():
outputs = model.generate(**inputs, max_new_tokens=min(max_tokens, 256), temperature=temperature if temperature > 0 else 1.0, top_p=top_p, do_sample=temperature > 0, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id)
generated_tokens = outputs[0][input_tokens:]
generated_text = tokenizer.decode(generated_tokens, skip_special_tokens=True).strip()
total_output_tokens += len(generated_tokens)
for i in range(0, len(generated_text), 5):
yield f"event: content_block_delta\ndata: {json.dumps({'type': 'content_block_delta', 'index': content_index, 'delta': {'type': 'text_delta', 'text': generated_text[i:i+5]}})}\n\n"
await asyncio.sleep(0.01)
yield f"event: content_block_stop\ndata: {json.dumps({'type': 'content_block_stop', 'index': content_index})}\n\n"
yield f"event: message_delta\ndata: {json.dumps({'type': 'message_delta', 'delta': {'stop_reason': 'end_turn', 'stop_sequence': None}, 'usage': {'output_tokens': total_output_tokens}})}\n\n"
yield f"event: message_stop\ndata: {json.dumps({'type': 'message_stop'})}\n\n"
def handle_tool_call(tools: List[Tool], messages: List[MessageParam], generated_text: str) -> Optional[ToolUseBlock]:
if not tools:
return None
for tool in tools:
if tool.name.lower() in generated_text.lower():
return ToolUseBlock(type="tool_use", id=f"toolu_{uuid.uuid4().hex[:24]}", name=tool.name, input={})
return None
# ============== Frontend ==============
@app.get("/", response_class=HTMLResponse)
async def home():
"""Serve the minimal centered frontend"""
try:
with open("/app/static/index.html", "r") as f:
return HTMLResponse(content=f.read())
except:
return HTMLResponse(content="""
<!DOCTYPE html>
<html><head><meta charset="UTF-8"><title>Model Runner</title>
<style>*{margin:0;padding:0}body{min-height:100vh;background:#000;display:flex;justify-content:center;align-items:center}
.logo{width:200px;height:200px;animation:float 3s ease-in-out infinite}
@keyframes float{0%,100%{transform:translateY(0)}50%{transform:translateY(-10px)}}</style></head>
<body><div class="logo"><svg viewBox="0 0 200 200" fill="none">
<defs><linearGradient id="r" x1="0%" y1="100%" x2="100%" y2="0%">
<stop offset="0%" stop-color="#ff0080"/><stop offset="25%" stop-color="#ff4d00"/>
<stop offset="50%" stop-color="#ffcc00"/><stop offset="75%" stop-color="#00ff88"/>
<stop offset="100%" stop-color="#00ccff"/></linearGradient></defs>
<path d="M100 20 L180 160 L20 160 Z" stroke="url(#r)" stroke-width="12" stroke-linecap="round" fill="none"/>
<path d="M100 70 L130 130 L70 130 Z" stroke="url(#r)" stroke-width="8" stroke-linecap="round" fill="none"/>
<line x1="80" y1="115" x2="120" y2="115" stroke="url(#r)" stroke-width="6" stroke-linecap="round"/>
</svg></div></body></html>
""")
# ============== Anthropic API Endpoints ==============
@app.post("/v1/messages")
async def create_message(request: AnthropicRequest):
try:
message_id = f"msg_{uuid.uuid4().hex[:24]}"
thinking_enabled = False
thinking_budget = 100
if request.thinking:
if isinstance(request.thinking, dict):
thinking_enabled = request.thinking.get('type') == 'enabled'
thinking_budget = request.thinking.get('budget_tokens', 100)
else:
thinking_enabled = request.thinking.type == 'enabled'
thinking_budget = request.thinking.budget_tokens or 100
prompt = format_messages_to_prompt(request.messages, request.system, include_thinking=thinking_enabled)
if request.stream:
return StreamingResponse(
generate_stream_with_thinking(prompt, request.max_tokens, request.temperature or 1.0, request.top_p or 1.0, message_id, request.model, thinking_enabled, thinking_budget),
media_type="text/event-stream",
headers={"Cache-Control": "no-cache", "Connection": "keep-alive", "X-Accel-Buffering": "no"}
)
content_blocks = []
total_output_tokens = 0
if thinking_enabled:
thinking_text, thinking_tokens = generate_thinking(prompt, thinking_budget)
total_output_tokens += thinking_tokens
content_blocks.append(ThinkingBlock(type="thinking", thinking=thinking_text))
generated_text, input_tokens, output_tokens = generate_text(prompt, request.max_tokens, request.temperature or 1.0, request.top_p or 1.0)
total_output_tokens += output_tokens
tool_use = handle_tool_call(request.tools, request.messages, generated_text) if request.tools else None
if tool_use:
content_blocks.append(TextBlock(type="text", text=generated_text))
content_blocks.append(tool_use)
stop_reason = "tool_use"
else:
content_blocks.append(TextBlock(type="text", text=generated_text))
stop_reason = "end_turn"
return AnthropicResponse(id=message_id, content=content_blocks, model=request.model, stop_reason=stop_reason, usage=Usage(input_tokens=input_tokens, output_tokens=total_output_tokens))
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
# ============== OpenAI Compatible ==============
class ChatMessage(BaseModel):
role: str
content: str
class ChatCompletionRequest(BaseModel):
model: str = "distilgpt2"
messages: List[ChatMessage]
max_tokens: Optional[int] = 1024
temperature: Optional[float] = 0.7
top_p: Optional[float] = 1.0
stream: Optional[bool] = False
@app.post("/v1/chat/completions")
async def chat_completions(request: ChatCompletionRequest):
try:
anthropic_messages = [MessageParam(role=msg.role if msg.role in ["user", "assistant"] else "user", content=msg.content) for msg in request.messages if msg.role in ["user", "assistant"]]
prompt = format_messages_to_prompt(anthropic_messages)
generated_text, input_tokens, output_tokens = generate_text(prompt, request.max_tokens or 1024, request.temperature or 0.7, request.top_p or 1.0)
return {"id": f"chatcmpl-{uuid.uuid4().hex[:24]}", "object": "chat.completion", "created": int(time.time()), "model": request.model, "choices": [{"index": 0, "message": {"role": "assistant", "content": generated_text}, "finish_reason": "stop"}], "usage": {"prompt_tokens": input_tokens, "completion_tokens": output_tokens, "total_tokens": input_tokens + output_tokens}}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/v1/models")
async def list_models():
return {"object": "list", "data": [{"id": "MiniMax-M2", "object": "model", "created": int(time.time()), "owned_by": "local"}, {"id": "MiniMax-M2-Stable", "object": "model", "created": int(time.time()), "owned_by": "local"}, {"id": GENERATOR_MODEL, "object": "model", "created": int(time.time()), "owned_by": "local"}]}
@app.get("/health")
async def health():
return {"status": "healthy", "timestamp": datetime.utcnow().isoformat(), "models_loaded": len(models) > 0}
@app.get("/info")
async def info():
return {"name": "Model Runner", "version": "1.1.0", "api_compatibility": ["anthropic", "openai"], "interleaved_thinking": True}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)