Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,50 +1,86 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import re
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
def extract_segments(transcript):
|
| 6 |
"""
|
| 7 |
Extract segments from a transcript.
|
| 8 |
-
|
|
|
|
|
|
|
| 9 |
"""
|
|
|
|
| 10 |
pattern = r"(?:\*\*)?([A-Za-z]+)(?:\*\*)?\s+\*?([0-9:]+)\*?\s*\n\n(.*?)(?=\n\n(?:\*\*)?[A-Za-z]+|\Z)"
|
| 11 |
-
segments = []
|
| 12 |
|
| 13 |
-
|
|
|
|
| 14 |
speaker, timestamp, text = match.groups()
|
| 15 |
-
segments.append((speaker, timestamp, text.strip()))
|
| 16 |
|
| 17 |
return segments
|
| 18 |
|
| 19 |
-
def
|
| 20 |
-
"""
|
| 21 |
-
|
| 22 |
-
|
| 23 |
|
| 24 |
-
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
"""
|
| 27 |
matches = {}
|
| 28 |
|
| 29 |
-
#
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
if speaker not in auto_by_speaker:
|
| 33 |
-
auto_by_speaker[speaker] = []
|
| 34 |
-
auto_by_speaker[speaker].append(i)
|
| 35 |
|
| 36 |
-
#
|
| 37 |
-
for h_idx,
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
return matches
|
| 43 |
|
| 44 |
def update_timestamps(human_transcript, auto_transcript):
|
| 45 |
"""
|
| 46 |
Update timestamps in human transcript using timestamps from auto transcript.
|
| 47 |
-
Preserves all human edits and formatting.
|
| 48 |
"""
|
| 49 |
# Extract segments from both transcripts
|
| 50 |
human_segments = extract_segments(human_transcript)
|
|
@@ -53,60 +89,79 @@ def update_timestamps(human_transcript, auto_transcript):
|
|
| 53 |
if not human_segments or not auto_segments:
|
| 54 |
return "Error: Could not parse transcripts. Check formatting.", ""
|
| 55 |
|
| 56 |
-
# Find matching segments
|
| 57 |
-
matches =
|
| 58 |
|
| 59 |
-
# Create updated transcript
|
| 60 |
updated_transcript = human_transcript
|
| 61 |
|
| 62 |
# Replace timestamps in reverse order to avoid position shifts
|
| 63 |
for h_idx in sorted(matches.keys(), reverse=True):
|
| 64 |
a_idx = matches[h_idx]
|
| 65 |
|
| 66 |
-
|
| 67 |
-
|
| 68 |
|
| 69 |
# Determine if markdown is used
|
| 70 |
is_markdown = "**" in human_transcript
|
| 71 |
|
| 72 |
-
# Create patterns to match the timestamp in the original text
|
| 73 |
if is_markdown:
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
replacement = f"**{h_speaker}** *{a_timestamp}*"
|
| 77 |
else:
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
replacement = f"{h_speaker} {a_timestamp}"
|
| 81 |
|
| 82 |
# Replace the timestamp in the transcript
|
| 83 |
updated_transcript = re.sub(pattern, replacement, updated_transcript, 1)
|
| 84 |
|
| 85 |
# Generate report
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
report = f"### Timestamp Update Report\n\n"
|
| 87 |
-
report += f"- Human segments: {
|
| 88 |
-
report += f"- Auto segments: {
|
| 89 |
-
report += f"-
|
|
|
|
|
|
|
|
|
|
| 90 |
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
report +=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
|
| 95 |
return updated_transcript, report
|
| 96 |
|
| 97 |
# Create Gradio interface
|
| 98 |
-
with gr.Blocks(title="
|
| 99 |
gr.Markdown("""
|
| 100 |
-
# 🎙️
|
| 101 |
|
| 102 |
-
This tool updates timestamps in a human-edited transcript
|
| 103 |
|
| 104 |
## Instructions:
|
| 105 |
1. Paste your auto-generated transcript (with correct timestamps)
|
| 106 |
-
2. Paste your human-edited transcript (with old timestamps)
|
| 107 |
3. Click "Update Timestamps"
|
| 108 |
|
| 109 |
-
The tool will
|
| 110 |
""")
|
| 111 |
|
| 112 |
with gr.Row():
|
|
@@ -119,7 +174,7 @@ with gr.Blocks(title="Simple Transcript Timestamp Updater") as demo:
|
|
| 119 |
|
| 120 |
with gr.Column():
|
| 121 |
human_transcript = gr.Textbox(
|
| 122 |
-
label="Human-Edited Transcript (
|
| 123 |
placeholder="Paste your human-edited transcript here...",
|
| 124 |
lines=15
|
| 125 |
)
|
|
@@ -136,7 +191,7 @@ with gr.Blocks(title="Simple Transcript Timestamp Updater") as demo:
|
|
| 136 |
|
| 137 |
with gr.TabItem("Report"):
|
| 138 |
report = gr.Markdown(
|
| 139 |
-
label="Report",
|
| 140 |
value="Report will appear here..."
|
| 141 |
)
|
| 142 |
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import re
|
| 3 |
+
import difflib
|
| 4 |
+
from typing import List, Dict, Tuple, Optional
|
| 5 |
+
from dataclasses import dataclass
|
| 6 |
+
|
| 7 |
+
@dataclass
|
| 8 |
+
class Segment:
|
| 9 |
+
"""A segment of a transcript with speaker, timestamp, and text"""
|
| 10 |
+
speaker: str
|
| 11 |
+
timestamp: str
|
| 12 |
+
text: str
|
| 13 |
+
index: int # Position in the original list
|
| 14 |
|
| 15 |
def extract_segments(transcript):
|
| 16 |
"""
|
| 17 |
Extract segments from a transcript.
|
| 18 |
+
Works with both formats:
|
| 19 |
+
- Speaker LastName 00:00:00
|
| 20 |
+
- **Speaker LastName** *00:00:00*
|
| 21 |
"""
|
| 22 |
+
# This regex matches both markdown and plain text formats
|
| 23 |
pattern = r"(?:\*\*)?([A-Za-z]+)(?:\*\*)?\s+\*?([0-9:]+)\*?\s*\n\n(.*?)(?=\n\n(?:\*\*)?[A-Za-z]+|\Z)"
|
|
|
|
| 24 |
|
| 25 |
+
segments = []
|
| 26 |
+
for i, match in enumerate(re.finditer(pattern, transcript, re.DOTALL)):
|
| 27 |
speaker, timestamp, text = match.groups()
|
| 28 |
+
segments.append(Segment(speaker, timestamp, text.strip(), i))
|
| 29 |
|
| 30 |
return segments
|
| 31 |
|
| 32 |
+
def clean_text_for_matching(text):
|
| 33 |
+
"""Clean text for better matching between transcripts"""
|
| 34 |
+
# Remove markdown links but keep the text
|
| 35 |
+
text = re.sub(r'\[([^\]]+)\]\([^)]+\)', r'\1', text)
|
| 36 |
|
| 37 |
+
# Remove markdown formatting
|
| 38 |
+
text = re.sub(r'\*\*|\*', '', text)
|
| 39 |
+
|
| 40 |
+
# Remove punctuation and normalize whitespace
|
| 41 |
+
text = re.sub(r'[,.;:!?()[\]{}]', ' ', text)
|
| 42 |
+
text = re.sub(r'\s+', ' ', text)
|
| 43 |
+
|
| 44 |
+
return text.lower().strip()
|
| 45 |
+
|
| 46 |
+
def find_best_matches(auto_segments, human_segments):
|
| 47 |
+
"""
|
| 48 |
+
Find the best matching segments between auto and human transcripts.
|
| 49 |
+
Uses text similarity to match segments.
|
| 50 |
"""
|
| 51 |
matches = {}
|
| 52 |
|
| 53 |
+
# Prepare cleaned texts for comparison
|
| 54 |
+
auto_cleaned_texts = [clean_text_for_matching(seg.text) for seg in auto_segments]
|
| 55 |
+
human_cleaned_texts = [clean_text_for_matching(seg.text) for seg in human_segments]
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
+
# For each human segment, find the best matching auto segment
|
| 58 |
+
for h_idx, h_text in enumerate(human_cleaned_texts):
|
| 59 |
+
best_match = -1
|
| 60 |
+
best_score = 0.6 # Minimum similarity threshold
|
| 61 |
+
|
| 62 |
+
for a_idx, a_text in enumerate(auto_cleaned_texts):
|
| 63 |
+
# Skip already matched segments
|
| 64 |
+
if a_idx in matches.values():
|
| 65 |
+
continue
|
| 66 |
+
|
| 67 |
+
# Calculate similarity
|
| 68 |
+
similarity = difflib.SequenceMatcher(None, h_text, a_text).ratio()
|
| 69 |
+
|
| 70 |
+
# If this is the best match so far, record it
|
| 71 |
+
if similarity > best_score:
|
| 72 |
+
best_score = similarity
|
| 73 |
+
best_match = a_idx
|
| 74 |
+
|
| 75 |
+
# If we found a good match, record it
|
| 76 |
+
if best_match != -1:
|
| 77 |
+
matches[h_idx] = best_match
|
| 78 |
|
| 79 |
return matches
|
| 80 |
|
| 81 |
def update_timestamps(human_transcript, auto_transcript):
|
| 82 |
"""
|
| 83 |
Update timestamps in human transcript using timestamps from auto transcript.
|
|
|
|
| 84 |
"""
|
| 85 |
# Extract segments from both transcripts
|
| 86 |
human_segments = extract_segments(human_transcript)
|
|
|
|
| 89 |
if not human_segments or not auto_segments:
|
| 90 |
return "Error: Could not parse transcripts. Check formatting.", ""
|
| 91 |
|
| 92 |
+
# Find matching segments based on text similarity
|
| 93 |
+
matches = find_best_matches(auto_segments, human_segments)
|
| 94 |
|
| 95 |
+
# Create updated transcript with new timestamps
|
| 96 |
updated_transcript = human_transcript
|
| 97 |
|
| 98 |
# Replace timestamps in reverse order to avoid position shifts
|
| 99 |
for h_idx in sorted(matches.keys(), reverse=True):
|
| 100 |
a_idx = matches[h_idx]
|
| 101 |
|
| 102 |
+
human_seg = human_segments[h_idx]
|
| 103 |
+
auto_seg = auto_segments[a_idx]
|
| 104 |
|
| 105 |
# Determine if markdown is used
|
| 106 |
is_markdown = "**" in human_transcript
|
| 107 |
|
| 108 |
+
# Create regex patterns to match the timestamp in the original text
|
| 109 |
if is_markdown:
|
| 110 |
+
pattern = fr"\*\*{human_seg.speaker}\*\*\s+\*{human_seg.timestamp}\*"
|
| 111 |
+
replacement = f"**{human_seg.speaker}** *{auto_seg.timestamp}*"
|
|
|
|
| 112 |
else:
|
| 113 |
+
pattern = fr"{human_seg.speaker}\s+{human_seg.timestamp}"
|
| 114 |
+
replacement = f"{human_seg.speaker} {auto_seg.timestamp}"
|
|
|
|
| 115 |
|
| 116 |
# Replace the timestamp in the transcript
|
| 117 |
updated_transcript = re.sub(pattern, replacement, updated_transcript, 1)
|
| 118 |
|
| 119 |
# Generate report
|
| 120 |
+
match_count = len(matches)
|
| 121 |
+
human_count = len(human_segments)
|
| 122 |
+
auto_count = len(auto_segments)
|
| 123 |
+
|
| 124 |
report = f"### Timestamp Update Report\n\n"
|
| 125 |
+
report += f"- Human segments: {human_count}\n"
|
| 126 |
+
report += f"- Auto segments: {auto_count}\n"
|
| 127 |
+
report += f"- Matched segments with updated timestamps: {match_count} ({match_count/human_count*100:.1f}%)\n"
|
| 128 |
+
|
| 129 |
+
if match_count < human_count:
|
| 130 |
+
report += f"- Segments not updated: {human_count - match_count}\n"
|
| 131 |
|
| 132 |
+
# Print some example matches for verification
|
| 133 |
+
if matches:
|
| 134 |
+
report += "\n### Example matches (for verification):\n\n"
|
| 135 |
+
|
| 136 |
+
# Show up to 5 matches
|
| 137 |
+
sample_matches = list(matches.items())[:5]
|
| 138 |
+
for h_idx, a_idx in sample_matches:
|
| 139 |
+
h_seg = human_segments[h_idx]
|
| 140 |
+
a_seg = auto_segments[a_idx]
|
| 141 |
+
|
| 142 |
+
# Truncate text samples for readability
|
| 143 |
+
h_preview = h_seg.text[:50] + "..." if len(h_seg.text) > 50 else h_seg.text
|
| 144 |
+
a_preview = a_seg.text[:50] + "..." if len(a_seg.text) > 50 else a_seg.text
|
| 145 |
+
|
| 146 |
+
report += f"- {h_seg.speaker}: timestamp changed from `{h_seg.timestamp}` to `{a_seg.timestamp}`\n"
|
| 147 |
+
report += f" - Human: \"{h_preview}\"\n"
|
| 148 |
+
report += f" - Auto: \"{a_preview}\"\n\n"
|
| 149 |
|
| 150 |
return updated_transcript, report
|
| 151 |
|
| 152 |
# Create Gradio interface
|
| 153 |
+
with gr.Blocks(title="Transcript Timestamp Updater") as demo:
|
| 154 |
gr.Markdown("""
|
| 155 |
+
# 🎙️ Transcript Timestamp Updater
|
| 156 |
|
| 157 |
+
This tool updates timestamps in a human-edited transcript by taking correct timestamps from an auto-generated transcript.
|
| 158 |
|
| 159 |
## Instructions:
|
| 160 |
1. Paste your auto-generated transcript (with correct timestamps)
|
| 161 |
+
2. Paste your human-edited transcript (with old timestamps that need updating)
|
| 162 |
3. Click "Update Timestamps"
|
| 163 |
|
| 164 |
+
The tool will preserve all human edits and only update the timestamps.
|
| 165 |
""")
|
| 166 |
|
| 167 |
with gr.Row():
|
|
|
|
| 174 |
|
| 175 |
with gr.Column():
|
| 176 |
human_transcript = gr.Textbox(
|
| 177 |
+
label="Human-Edited Transcript (timestamps need updating)",
|
| 178 |
placeholder="Paste your human-edited transcript here...",
|
| 179 |
lines=15
|
| 180 |
)
|
|
|
|
| 191 |
|
| 192 |
with gr.TabItem("Report"):
|
| 193 |
report = gr.Markdown(
|
| 194 |
+
label="Matching Report",
|
| 195 |
value="Report will appear here..."
|
| 196 |
)
|
| 197 |
|