Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,248 +1,130 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import re
|
| 3 |
-
import
|
| 4 |
-
import os
|
| 5 |
-
from typing import List, Dict, Tuple, Optional
|
| 6 |
-
from dataclasses import dataclass
|
| 7 |
-
import numpy as np
|
| 8 |
|
| 9 |
-
|
| 10 |
-
class Segment:
|
| 11 |
-
"""A segment of a transcript with a speaker and text"""
|
| 12 |
-
speaker: str
|
| 13 |
-
timestamp: str
|
| 14 |
-
text: str
|
| 15 |
-
original_text: str # The text as it appears in the original transcript
|
| 16 |
-
index: int # Position in the original transcript
|
| 17 |
-
|
| 18 |
-
def clean_text_for_matching(text: str) -> str:
|
| 19 |
-
"""Clean text for matching purposes (remove formatting, punctuation, etc.)"""
|
| 20 |
-
# Remove markdown links and formatting
|
| 21 |
-
text = re.sub(r'\[([^\]]+)\]\([^)]+\)', r'\1', text) # Replace markdown links with just the text
|
| 22 |
-
text = re.sub(r'\*\*|\*', '', text) # Remove bold and italic formatting
|
| 23 |
-
|
| 24 |
-
# Remove common filler words and punctuation for better matching
|
| 25 |
-
text = re.sub(r'[,.;:!?]', ' ', text)
|
| 26 |
-
text = re.sub(r'\s+', ' ', text)
|
| 27 |
-
|
| 28 |
-
return text.lower().strip()
|
| 29 |
-
|
| 30 |
-
def load_transcript_file(file_path: str) -> str:
|
| 31 |
-
"""Load transcript from a file"""
|
| 32 |
-
with open(file_path, 'r', encoding='utf-8') as f:
|
| 33 |
-
return f.read()
|
| 34 |
-
|
| 35 |
-
def parse_transcript(transcript: str) -> List[Segment]:
|
| 36 |
"""
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
- Speaker LastName 00:00:00
|
| 40 |
-
- **Speaker LastName** *00:00:00*
|
| 41 |
"""
|
| 42 |
-
|
| 43 |
-
pattern = r"(?:\*\*)?(?:Speaker\s+)?([A-Za-z]+)(?:\*\*)?\s+(?:\*)?([0-9:]+)(?:\*)?\s*\n\n(.*?)(?=\n\n(?:\*\*)?(?:Speaker\s+)?[A-Za-z]+|\Z)"
|
| 44 |
-
|
| 45 |
segments = []
|
| 46 |
-
|
|
|
|
| 47 |
speaker, timestamp, text = match.groups()
|
| 48 |
-
|
| 49 |
-
cleaned_text = clean_text_for_matching(original_text)
|
| 50 |
-
segments.append(Segment(speaker, timestamp, cleaned_text, original_text, i))
|
| 51 |
|
| 52 |
return segments
|
| 53 |
|
| 54 |
-
def
|
| 55 |
-
"""
|
| 56 |
-
Align segments from human-edited transcript to auto-generated transcript.
|
| 57 |
-
Returns a dictionary mapping human segment indices to auto segment indices.
|
| 58 |
"""
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
# Create text similarity matrix
|
| 62 |
-
similarity_matrix = np.zeros((len(human_segments), len(auto_segments)))
|
| 63 |
-
|
| 64 |
-
for h_idx, h_segment in enumerate(human_segments):
|
| 65 |
-
for a_idx, a_segment in enumerate(auto_segments):
|
| 66 |
-
similarity = difflib.SequenceMatcher(None, h_segment.text, a_segment.text).ratio()
|
| 67 |
-
similarity_matrix[h_idx, a_idx] = similarity
|
| 68 |
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
remaining_auto_indices.remove(best_match)
|
| 89 |
-
|
| 90 |
-
return alignments
|
| 91 |
|
| 92 |
-
def
|
| 93 |
-
alignments: Dict[int, int], is_markdown: bool) -> str:
|
| 94 |
"""
|
| 95 |
-
|
| 96 |
-
Preserves all human edits
|
| 97 |
"""
|
| 98 |
-
|
|
|
|
|
|
|
| 99 |
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
# Segment was matched, use timestamp from auto segment
|
| 103 |
-
a_idx = alignments[h_idx]
|
| 104 |
-
|
| 105 |
-
if is_markdown:
|
| 106 |
-
updated_segments.append(f"**{h_segment.speaker}** *{auto_segments[a_idx].timestamp}*\n\n{h_segment.original_text}")
|
| 107 |
-
else:
|
| 108 |
-
updated_segments.append(f"Speaker {h_segment.speaker} {auto_segments[a_idx].timestamp}\n\n{h_segment.original_text}")
|
| 109 |
-
else:
|
| 110 |
-
# No match found, keep original timestamp but mark it
|
| 111 |
-
if is_markdown:
|
| 112 |
-
updated_segments.append(f"**{h_segment.speaker}** *{h_segment.timestamp} [NO MATCH]*\n\n{h_segment.original_text}")
|
| 113 |
-
else:
|
| 114 |
-
updated_segments.append(f"Speaker {h_segment.speaker} {h_segment.timestamp} [NO MATCH]\n\n{h_segment.original_text}")
|
| 115 |
-
|
| 116 |
-
return "\n\n".join(updated_segments)
|
| 117 |
-
|
| 118 |
-
def generate_match_report(human_segments: List[Segment], auto_segments: List[Segment],
|
| 119 |
-
alignments: Dict[int, int]) -> str:
|
| 120 |
-
"""Generate a report about the matching process"""
|
| 121 |
-
total_human = len(human_segments)
|
| 122 |
-
total_auto = len(auto_segments)
|
| 123 |
-
total_matched = len(alignments)
|
| 124 |
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
report += f"- Auto segments: {total_auto}\n"
|
| 128 |
-
report += f"- Matched segments: {total_matched} ({total_matched/total_human*100:.1f}%)\n"
|
| 129 |
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
for h_idx, h_segment in enumerate(human_segments):
|
| 133 |
-
if h_idx not in alignments:
|
| 134 |
-
report += f"- Speaker {h_segment.speaker} at {h_segment.timestamp}: '{h_segment.text[:50]}...'\n"
|
| 135 |
|
| 136 |
-
#
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
difflib.SequenceMatcher(None,
|
| 140 |
-
human_segments[h_idx].text,
|
| 141 |
-
auto_segments[a_idx].text).ratio()
|
| 142 |
-
for h_idx, a_idx in alignments.items()
|
| 143 |
-
]
|
| 144 |
-
avg_similarity = sum(similarities) / len(similarities)
|
| 145 |
-
report += f"\n### Match Quality\n\n"
|
| 146 |
-
report += f"- Average similarity: {avg_similarity:.2f}\n"
|
| 147 |
-
|
| 148 |
-
return report
|
| 149 |
-
|
| 150 |
-
def process_transcripts(auto_transcript, human_transcript):
|
| 151 |
-
"""Process the auto and human transcripts to update timestamps"""
|
| 152 |
-
try:
|
| 153 |
-
# Load transcripts
|
| 154 |
-
auto_content = auto_transcript.decode('utf-8') if isinstance(auto_transcript, bytes) else auto_transcript
|
| 155 |
-
human_content = human_transcript.decode('utf-8') if isinstance(human_transcript, bytes) else human_transcript
|
| 156 |
|
| 157 |
-
|
| 158 |
-
|
| 159 |
|
| 160 |
-
#
|
| 161 |
-
|
| 162 |
-
human_segments = parse_transcript(human_content)
|
| 163 |
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
# Generate report
|
| 174 |
-
report = generate_match_report(human_segments, auto_segments, alignments)
|
| 175 |
|
| 176 |
-
|
|
|
|
| 177 |
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
output_dir = "output"
|
| 184 |
-
if not os.path.exists(output_dir):
|
| 185 |
-
os.makedirs(output_dir)
|
| 186 |
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
f
|
| 190 |
|
| 191 |
-
return
|
| 192 |
|
| 193 |
# Create Gradio interface
|
| 194 |
-
with gr.Blocks(title="Transcript Timestamp
|
| 195 |
gr.Markdown("""
|
| 196 |
-
# 🎙️ Transcript Timestamp
|
| 197 |
|
| 198 |
-
This tool updates timestamps in human-edited
|
| 199 |
|
| 200 |
## Instructions:
|
| 201 |
-
1.
|
| 202 |
-
2.
|
| 203 |
-
3. Click "
|
| 204 |
|
| 205 |
-
The tool will
|
| 206 |
""")
|
| 207 |
|
| 208 |
with gr.Row():
|
| 209 |
with gr.Column():
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
label="Auto-generated Transcript Source",
|
| 213 |
-
value="Paste Text"
|
| 214 |
-
)
|
| 215 |
-
auto_file = gr.File(
|
| 216 |
-
label="Upload Auto-generated Transcript",
|
| 217 |
-
file_types=[".md", ".txt"],
|
| 218 |
-
visible=False
|
| 219 |
-
)
|
| 220 |
-
auto_text = gr.TextArea(
|
| 221 |
-
label="Auto-generated Transcript (with new timestamps)",
|
| 222 |
placeholder="Paste the auto-generated transcript here...",
|
| 223 |
-
lines=15
|
| 224 |
-
visible=True
|
| 225 |
)
|
| 226 |
|
| 227 |
with gr.Column():
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
)
|
| 233 |
-
human_file = gr.File(
|
| 234 |
-
label="Upload Human-edited Transcript",
|
| 235 |
-
file_types=[".md", ".txt"],
|
| 236 |
-
visible=False
|
| 237 |
-
)
|
| 238 |
-
human_text = gr.TextArea(
|
| 239 |
-
label="Human-edited Transcript (with old timestamps)",
|
| 240 |
-
placeholder="Paste the human-edited transcript here...",
|
| 241 |
-
lines=15,
|
| 242 |
-
visible=True
|
| 243 |
)
|
| 244 |
|
| 245 |
-
update_btn = gr.Button("
|
| 246 |
|
| 247 |
with gr.Tabs():
|
| 248 |
with gr.TabItem("Updated Transcript"):
|
|
@@ -251,63 +133,19 @@ with gr.Blocks(title="Transcript Timestamp Synchronizer") as demo:
|
|
| 251 |
placeholder="The updated transcript will appear here...",
|
| 252 |
lines=20
|
| 253 |
)
|
| 254 |
-
download_btn = gr.Button("Download Updated Transcript")
|
| 255 |
-
download_path = gr.File(label="Download", visible=False)
|
| 256 |
|
| 257 |
-
with gr.TabItem("
|
| 258 |
-
|
| 259 |
-
label="
|
| 260 |
-
value="
|
| 261 |
)
|
| 262 |
|
| 263 |
-
# Handle visibility of upload/paste options
|
| 264 |
-
def update_auto_visibility(choice):
|
| 265 |
-
return gr.update(visible=choice=="Upload File"), gr.update(visible=choice=="Paste Text")
|
| 266 |
-
|
| 267 |
-
def update_human_visibility(choice):
|
| 268 |
-
return gr.update(visible=choice=="Upload File"), gr.update(visible=choice=="Paste Text")
|
| 269 |
-
|
| 270 |
-
auto_source.change(update_auto_visibility, auto_source, [auto_file, auto_text])
|
| 271 |
-
human_source.change(update_human_visibility, human_source, [human_file, human_text])
|
| 272 |
-
|
| 273 |
-
# Load file content if uploaded
|
| 274 |
-
def load_auto_file(file):
|
| 275 |
-
if file is None:
|
| 276 |
-
return ""
|
| 277 |
-
with open(file.name, "r", encoding="utf-8") as f:
|
| 278 |
-
return f.read()
|
| 279 |
-
|
| 280 |
-
def load_human_file(file):
|
| 281 |
-
if file is None:
|
| 282 |
-
return ""
|
| 283 |
-
with open(file.name, "r", encoding="utf-8") as f:
|
| 284 |
-
return f.read()
|
| 285 |
-
|
| 286 |
-
auto_file.change(load_auto_file, auto_file, auto_text)
|
| 287 |
-
human_file.change(load_human_file, human_file, human_text)
|
| 288 |
-
|
| 289 |
-
# Process transcripts
|
| 290 |
-
def handle_process(auto_content, human_content):
|
| 291 |
-
return process_transcripts(auto_content, human_content)
|
| 292 |
-
|
| 293 |
update_btn.click(
|
| 294 |
-
fn=
|
| 295 |
-
inputs=[
|
| 296 |
-
outputs=[updated_transcript,
|
| 297 |
-
)
|
| 298 |
-
|
| 299 |
-
# Handle download
|
| 300 |
-
def prepare_download(transcript):
|
| 301 |
-
if not transcript:
|
| 302 |
-
return None
|
| 303 |
-
return save_transcript(transcript)
|
| 304 |
-
|
| 305 |
-
download_btn.click(
|
| 306 |
-
fn=prepare_download,
|
| 307 |
-
inputs=[updated_transcript],
|
| 308 |
-
outputs=[download_path]
|
| 309 |
)
|
| 310 |
|
| 311 |
-
#
|
| 312 |
if __name__ == "__main__":
|
| 313 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import re
|
| 3 |
+
from typing import List, Dict, Tuple
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
+
def extract_segments(transcript):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
"""
|
| 7 |
+
Extract segments from a transcript.
|
| 8 |
+
Returns a list of tuples: (speaker, timestamp, text)
|
|
|
|
|
|
|
| 9 |
"""
|
| 10 |
+
pattern = r"(?:\*\*)?([A-Za-z]+)(?:\*\*)?\s+\*?([0-9:]+)\*?\s*\n\n(.*?)(?=\n\n(?:\*\*)?[A-Za-z]+|\Z)"
|
|
|
|
|
|
|
| 11 |
segments = []
|
| 12 |
+
|
| 13 |
+
for match in re.finditer(pattern, transcript, re.DOTALL):
|
| 14 |
speaker, timestamp, text = match.groups()
|
| 15 |
+
segments.append((speaker, timestamp, text.strip()))
|
|
|
|
|
|
|
| 16 |
|
| 17 |
return segments
|
| 18 |
|
| 19 |
+
def find_matching_segments(auto_segments, human_segments):
|
|
|
|
|
|
|
|
|
|
| 20 |
"""
|
| 21 |
+
Find matching segments between auto and human transcripts.
|
| 22 |
+
Returns a dictionary mapping human segment index to auto segment index.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
+
Very simple matching based on speaker sequence - assumes both transcripts
|
| 25 |
+
have the same speakers in the same order, just with different timestamps.
|
| 26 |
+
"""
|
| 27 |
+
matches = {}
|
| 28 |
+
|
| 29 |
+
# Group segments by speaker
|
| 30 |
+
auto_by_speaker = {}
|
| 31 |
+
for i, (speaker, _, _) in enumerate(auto_segments):
|
| 32 |
+
if speaker not in auto_by_speaker:
|
| 33 |
+
auto_by_speaker[speaker] = []
|
| 34 |
+
auto_by_speaker[speaker].append(i)
|
| 35 |
+
|
| 36 |
+
# Match segments by speaker order
|
| 37 |
+
for h_idx, (speaker, _, _) in enumerate(human_segments):
|
| 38 |
+
if speaker in auto_by_speaker and auto_by_speaker[speaker]:
|
| 39 |
+
# Get the next available segment for this speaker
|
| 40 |
+
matches[h_idx] = auto_by_speaker[speaker].pop(0)
|
| 41 |
+
|
| 42 |
+
return matches
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
+
def update_timestamps(human_transcript, auto_transcript):
|
|
|
|
| 45 |
"""
|
| 46 |
+
Update timestamps in human transcript using timestamps from auto transcript.
|
| 47 |
+
Preserves all human edits and formatting.
|
| 48 |
"""
|
| 49 |
+
# Extract segments from both transcripts
|
| 50 |
+
human_segments = extract_segments(human_transcript)
|
| 51 |
+
auto_segments = extract_segments(auto_transcript)
|
| 52 |
|
| 53 |
+
if not human_segments or not auto_segments:
|
| 54 |
+
return "Error: Could not parse transcripts. Check formatting.", ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
+
# Find matching segments
|
| 57 |
+
matches = find_matching_segments(auto_segments, human_segments)
|
|
|
|
|
|
|
| 58 |
|
| 59 |
+
# Create updated transcript
|
| 60 |
+
updated_transcript = human_transcript
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
+
# Replace timestamps in reverse order to avoid position shifts
|
| 63 |
+
for h_idx in sorted(matches.keys(), reverse=True):
|
| 64 |
+
a_idx = matches[h_idx]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
+
h_speaker, h_timestamp, _ = human_segments[h_idx]
|
| 67 |
+
_, a_timestamp, _ = auto_segments[a_idx]
|
| 68 |
|
| 69 |
+
# Determine if markdown is used
|
| 70 |
+
is_markdown = "**" in human_transcript
|
|
|
|
| 71 |
|
| 72 |
+
# Create patterns to match the timestamp in the original text
|
| 73 |
+
if is_markdown:
|
| 74 |
+
# For markdown format: **Speaker** *00:00:00*
|
| 75 |
+
pattern = fr"\*\*{h_speaker}\*\*\s+\*{h_timestamp}\*"
|
| 76 |
+
replacement = f"**{h_speaker}** *{a_timestamp}*"
|
| 77 |
+
else:
|
| 78 |
+
# For plain format: Speaker 00:00:00
|
| 79 |
+
pattern = fr"{h_speaker}\s+{h_timestamp}"
|
| 80 |
+
replacement = f"{h_speaker} {a_timestamp}"
|
|
|
|
|
|
|
| 81 |
|
| 82 |
+
# Replace the timestamp in the transcript
|
| 83 |
+
updated_transcript = re.sub(pattern, replacement, updated_transcript, 1)
|
| 84 |
|
| 85 |
+
# Generate report
|
| 86 |
+
report = f"### Timestamp Update Report\n\n"
|
| 87 |
+
report += f"- Human segments: {len(human_segments)}\n"
|
| 88 |
+
report += f"- Auto segments: {len(auto_segments)}\n"
|
| 89 |
+
report += f"- Updated timestamps: {len(matches)}\n"
|
|
|
|
|
|
|
|
|
|
| 90 |
|
| 91 |
+
if len(matches) < len(human_segments):
|
| 92 |
+
unmatched = len(human_segments) - len(matches)
|
| 93 |
+
report += f"- Segments not updated: {unmatched}\n"
|
| 94 |
|
| 95 |
+
return updated_transcript, report
|
| 96 |
|
| 97 |
# Create Gradio interface
|
| 98 |
+
with gr.Blocks(title="Simple Transcript Timestamp Updater") as demo:
|
| 99 |
gr.Markdown("""
|
| 100 |
+
# 🎙️ Simple Transcript Timestamp Updater
|
| 101 |
|
| 102 |
+
This tool updates timestamps in a human-edited transcript based on an auto-generated transcript.
|
| 103 |
|
| 104 |
## Instructions:
|
| 105 |
+
1. Paste your auto-generated transcript (with correct timestamps)
|
| 106 |
+
2. Paste your human-edited transcript (with old timestamps)
|
| 107 |
+
3. Click "Update Timestamps"
|
| 108 |
|
| 109 |
+
The tool will update only the timestamps while preserving all human edits.
|
| 110 |
""")
|
| 111 |
|
| 112 |
with gr.Row():
|
| 113 |
with gr.Column():
|
| 114 |
+
auto_transcript = gr.Textbox(
|
| 115 |
+
label="Auto-Generated Transcript (with correct timestamps)",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
placeholder="Paste the auto-generated transcript here...",
|
| 117 |
+
lines=15
|
|
|
|
| 118 |
)
|
| 119 |
|
| 120 |
with gr.Column():
|
| 121 |
+
human_transcript = gr.Textbox(
|
| 122 |
+
label="Human-Edited Transcript (with old timestamps)",
|
| 123 |
+
placeholder="Paste your human-edited transcript here...",
|
| 124 |
+
lines=15
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
)
|
| 126 |
|
| 127 |
+
update_btn = gr.Button("Update Timestamps")
|
| 128 |
|
| 129 |
with gr.Tabs():
|
| 130 |
with gr.TabItem("Updated Transcript"):
|
|
|
|
| 133 |
placeholder="The updated transcript will appear here...",
|
| 134 |
lines=20
|
| 135 |
)
|
|
|
|
|
|
|
| 136 |
|
| 137 |
+
with gr.TabItem("Report"):
|
| 138 |
+
report = gr.Markdown(
|
| 139 |
+
label="Report",
|
| 140 |
+
value="Report will appear here..."
|
| 141 |
)
|
| 142 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
update_btn.click(
|
| 144 |
+
fn=update_timestamps,
|
| 145 |
+
inputs=[human_transcript, auto_transcript],
|
| 146 |
+
outputs=[updated_transcript, report]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
)
|
| 148 |
|
| 149 |
+
# Launch the app
|
| 150 |
if __name__ == "__main__":
|
| 151 |
demo.launch()
|