Spaces:
Running
Running
| import gradio as gr | |
| import re | |
| import difflib | |
| from typing import List, Dict, Tuple, Optional | |
| from dataclasses import dataclass | |
| class Segment: | |
| """A segment of a transcript with speaker, timestamp, and text""" | |
| speaker: str | |
| timestamp: str | |
| text: str | |
| index: int # Position in the original list | |
| def extract_segments(transcript): | |
| """ | |
| Extract segments from a transcript. | |
| Works with both formats: | |
| - Speaker LastName 00:00:00 | |
| - **Speaker LastName** *00:00:00* | |
| """ | |
| # This regex matches both markdown and plain text formats | |
| pattern = r"(?:\*\*)?([A-Za-z]+)(?:\*\*)?\s+\*?([0-9:]+)\*?\s*\n\n(.*?)(?=\n\n(?:\*\*)?[A-Za-z]+|\Z)" | |
| segments = [] | |
| for i, match in enumerate(re.finditer(pattern, transcript, re.DOTALL)): | |
| speaker, timestamp, text = match.groups() | |
| segments.append(Segment(speaker, timestamp, text.strip(), i)) | |
| return segments | |
| def clean_text_for_matching(text): | |
| """Clean text for better matching between transcripts""" | |
| # Remove markdown links but keep the text | |
| text = re.sub(r'\[([^\]]+)\]\([^)]+\)', r'\1', text) | |
| # Remove markdown formatting | |
| text = re.sub(r'\*\*|\*', '', text) | |
| # Remove punctuation and normalize whitespace | |
| text = re.sub(r'[,.;:!?()[\]{}]', ' ', text) | |
| text = re.sub(r'\s+', ' ', text) | |
| return text.lower().strip() | |
| def find_best_matches(auto_segments, human_segments): | |
| """ | |
| Find the best matching segments between auto and human transcripts. | |
| Uses text similarity to match segments. | |
| """ | |
| matches = {} | |
| # Prepare cleaned texts for comparison | |
| auto_cleaned_texts = [clean_text_for_matching(seg.text) for seg in auto_segments] | |
| human_cleaned_texts = [clean_text_for_matching(seg.text) for seg in human_segments] | |
| # For each human segment, find the best matching auto segment | |
| for h_idx, h_text in enumerate(human_cleaned_texts): | |
| best_match = -1 | |
| best_score = 0.6 # Minimum similarity threshold | |
| for a_idx, a_text in enumerate(auto_cleaned_texts): | |
| # Skip already matched segments | |
| if a_idx in matches.values(): | |
| continue | |
| # Calculate similarity | |
| similarity = difflib.SequenceMatcher(None, h_text, a_text).ratio() | |
| # If this is the best match so far, record it | |
| if similarity > best_score: | |
| best_score = similarity | |
| best_match = a_idx | |
| # If we found a good match, record it | |
| if best_match != -1: | |
| matches[h_idx] = best_match | |
| return matches | |
| def update_timestamps(human_transcript, auto_transcript): | |
| """ | |
| Update timestamps in human transcript using timestamps from auto transcript. | |
| """ | |
| # Extract segments from both transcripts | |
| human_segments = extract_segments(human_transcript) | |
| auto_segments = extract_segments(auto_transcript) | |
| if not human_segments or not auto_segments: | |
| return "Error: Could not parse transcripts. Check formatting.", "" | |
| # Find matching segments based on text similarity | |
| matches = find_best_matches(auto_segments, human_segments) | |
| # Create updated transcript with new timestamps | |
| updated_transcript = human_transcript | |
| # Replace timestamps in reverse order to avoid position shifts | |
| for h_idx in sorted(matches.keys(), reverse=True): | |
| a_idx = matches[h_idx] | |
| human_seg = human_segments[h_idx] | |
| auto_seg = auto_segments[a_idx] | |
| # Determine if markdown is used | |
| is_markdown = "**" in human_transcript | |
| # Create regex patterns to match the timestamp in the original text | |
| if is_markdown: | |
| pattern = fr"\*\*{human_seg.speaker}\*\*\s+\*{human_seg.timestamp}\*" | |
| replacement = f"**{human_seg.speaker}** *{auto_seg.timestamp}*" | |
| else: | |
| pattern = fr"{human_seg.speaker}\s+{human_seg.timestamp}" | |
| replacement = f"{human_seg.speaker} {auto_seg.timestamp}" | |
| # Replace the timestamp in the transcript | |
| updated_transcript = re.sub(pattern, replacement, updated_transcript, 1) | |
| # Generate report | |
| match_count = len(matches) | |
| human_count = len(human_segments) | |
| auto_count = len(auto_segments) | |
| report = f"### Timestamp Update Report\n\n" | |
| report += f"- Human segments: {human_count}\n" | |
| report += f"- Auto segments: {auto_count}\n" | |
| report += f"- Matched segments with updated timestamps: {match_count} ({match_count/human_count*100:.1f}%)\n" | |
| if match_count < human_count: | |
| report += f"- Segments not updated: {human_count - match_count}\n" | |
| # Print some example matches for verification | |
| if matches: | |
| report += "\n### Example matches (for verification):\n\n" | |
| # Show up to 5 matches | |
| sample_matches = list(matches.items())[:5] | |
| for h_idx, a_idx in sample_matches: | |
| h_seg = human_segments[h_idx] | |
| a_seg = auto_segments[a_idx] | |
| # Truncate text samples for readability | |
| h_preview = h_seg.text[:50] + "..." if len(h_seg.text) > 50 else h_seg.text | |
| a_preview = a_seg.text[:50] + "..." if len(a_seg.text) > 50 else a_seg.text | |
| report += f"- {h_seg.speaker}: timestamp changed from `{h_seg.timestamp}` to `{a_seg.timestamp}`\n" | |
| report += f" - Human: \"{h_preview}\"\n" | |
| report += f" - Auto: \"{a_preview}\"\n\n" | |
| return updated_transcript, report | |
| # Create Gradio interface | |
| with gr.Blocks(title="Transcript Timestamp Updater") as demo: | |
| gr.Markdown(""" | |
| # ๐๏ธ Transcript Timestamp Updater | |
| This tool updates timestamps in a human-edited transcript by taking correct timestamps from an auto-generated transcript. | |
| ## Instructions: | |
| 1. Paste your auto-generated transcript (with correct timestamps) | |
| 2. Paste your human-edited transcript (with old timestamps that need updating) | |
| 3. Click "Update Timestamps" | |
| The tool will preserve all human edits and only update the timestamps. | |
| """) | |
| with gr.Row(): | |
| with gr.Column(): | |
| auto_transcript = gr.Textbox( | |
| label="Auto-Generated Transcript (with correct timestamps)", | |
| placeholder="Paste the auto-generated transcript here...", | |
| lines=15 | |
| ) | |
| with gr.Column(): | |
| human_transcript = gr.Textbox( | |
| label="Human-Edited Transcript (timestamps need updating)", | |
| placeholder="Paste your human-edited transcript here...", | |
| lines=15 | |
| ) | |
| update_btn = gr.Button("Update Timestamps") | |
| with gr.Tabs(): | |
| with gr.TabItem("Updated Transcript"): | |
| updated_transcript = gr.TextArea( | |
| label="Updated Transcript", | |
| placeholder="The updated transcript will appear here...", | |
| lines=20 | |
| ) | |
| with gr.TabItem("Report"): | |
| report = gr.Markdown( | |
| label="Matching Report", | |
| value="Report will appear here..." | |
| ) | |
| update_btn.click( | |
| fn=update_timestamps, | |
| inputs=[human_transcript, auto_transcript], | |
| outputs=[updated_transcript, report] | |
| ) | |
| # Launch the app | |
| if __name__ == "__main__": | |
| demo.launch() |