layout_paddle / app.py
bla's picture
Update app.py
604adea verified
import os
import io
import json
import logging
import sys
import tempfile
import re
import base64
from pathlib import Path
from typing import Optional
import fitz # PyMuPDF
import numpy as np
import requests
import torch
import torchvision
from PIL import Image, ImageDraw, ImageFont
from fastapi import FastAPI, File, Form, HTTPException, UploadFile
from fastapi.responses import HTMLResponse, JSONResponse
from paddleocr import PaddleOCR
from pydantic import BaseModel, HttpUrl
# --- Configure Logging ---
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
handlers=[logging.StreamHandler(sys.stdout)]
)
logger = logging.getLogger(__name__)
logger.info("Starting application initialization...")
# --- Configuration ---
MODEL_PATH = "/content/layout-model.pt"
# --- Global Variables ---
ocr: Optional[PaddleOCR] = None
layout_model = None
device: str = 'cuda' if torch.cuda.is_available() else 'cpu'
# Label mapping
id_to_names = {
0: 'title', 1: 'plain text', 2: 'abandon', 3: 'figure', 4: 'figure_caption',
5: 'table', 6: 'table_caption', 7: 'table_footnote', 8: 'isolate_formula',
9: 'formula_caption'
}
# --- FastAPI Application ---
app = FastAPI(title="Document Layout Analysis API", version="1.0.0")
# --- FastAPI Startup Event ---
@app.on_event("startup")
async def startup_event():
global ocr, layout_model
lang="en"
try:
logger.info("Initializing PaddleOCR...")
ocr = PaddleOCR(
use_angle_cls=True,
lang=lang,
use_gpu=False,
show_log=False,
det_model_dir=f'/app/models/det/{lang}/en_PP-OCRv3_det_infer',
rec_model_dir=f'/app/models/rec/{lang}/en_PP-OCRv4_rec_infer',
cls_model_dir=f'/app/models/cls/{lang}/ch_ppocr_mobile_v2.0_cls_infer'
)
logger.info("βœ“ PaddleOCR initialized successfully")
except Exception as e:
logger.error(f"Failed to initialize PaddleOCR: {e}", exc_info=True)
raise RuntimeError("Could not initialize PaddleOCR") from e
try:
logger.info(f"Loading DocLayout-YOLO model from {MODEL_PATH}...")
if not os.path.exists(MODEL_PATH):
logger.error(f"Model file not found at {MODEL_PATH}")
raise FileNotFoundError(f"Model file not found at {MODEL_PATH}")
# Import YOLOv10 from doclayout_yolo
from doclayout_yolo import YOLOv10
layout_model = YOLOv10(MODEL_PATH)
logger.info(f"βœ“ DocLayout-YOLO model loaded successfully on device: {device}")
except Exception as e:
logger.error(f"Failed to load DocLayout-YOLO model: {e}", exc_info=True)
raise RuntimeError("Could not load layout model") from e
# --- Pydantic Request Models ---
class URLRequest(BaseModel):
url: HttpUrl
resolution: Optional[int] = None
# --- Helper Functions ---
def extract_number_from_caption(caption_text: str) -> Optional[str]:
"""Extract the number from a caption like 'Table 3' or 'Figure 2.1'"""
if not caption_text:
return None
NUMBER_PATTERN = re.compile(r"(?:Table|Figure)\s*([\d\.]+)", re.IGNORECASE)
match = NUMBER_PATTERN.search(caption_text)
return match.group(1) if match else None
def detect_layout_regions(page: fitz.Page, target_width: Optional[int] = None, conf_threshold=0.25, iou_threshold=0.3):
"""Use DocLayout-YOLO to detect document elements."""
if layout_model is None:
raise RuntimeError("Layout model is not initialized.")
logger.debug(f"Detecting layout regions with target_width={target_width}")
try:
pix = page.get_pixmap(dpi=150)
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
if target_width:
aspect_ratio = img.height / img.width
target_height = int(target_width * aspect_ratio)
img = img.resize((target_width, target_height), Image.LANCZOS)
logger.debug(f"Resized image to {target_width}x{target_height}")
logger.debug(f"Running model prediction on image size: {img.width}x{img.height}")
# Run prediction using YOLOv10
results = layout_model.predict(
img,
imgsz=1280,
conf=conf_threshold,
device=device
)
# Get first result
det_res = results[0]
# Access boxes using the correct API
boxes = det_res.boxes.xyxy.cpu().numpy()
classes = det_res.boxes.cls.cpu().numpy()
scores = det_res.boxes.conf.cpu().numpy()
logger.debug(f"Detected {len(boxes)} boxes before NMS")
if len(boxes) == 0:
logger.info("No objects detected")
return [], img
# Apply NMS
boxes_tensor = torch.from_numpy(boxes)
scores_tensor = torch.from_numpy(scores)
indices = torchvision.ops.nms(boxes_tensor, scores_tensor, iou_threshold)
boxes = boxes[indices.numpy()]
scores = scores[indices.numpy()]
classes = classes[indices.numpy()]
logger.debug(f"Detected {len(boxes)} boxes after NMS")
detected_regions = []
for box, score, cls in zip(boxes, scores, classes):
box = [float(coord) for coord in box]
label_name = id_to_names.get(int(cls), 'unknown')
detected_regions.append({
"bbox": box,
"type": label_name,
"confidence": float(score)
})
logger.debug(f"Returning {len(detected_regions)} detected regions")
return detected_regions, img
except Exception as e:
logger.error(f"Error in detect_layout_regions: {e}", exc_info=True)
raise
def extract_text_from_bbox(img: Image.Image, bbox: list, padding: int = 5) -> str:
"""Run OCR on a specific bounding box region of a PIL Image."""
if ocr is None:
raise RuntimeError("OCR model is not initialized.")
logger.debug(f"Extracting text from bbox: {bbox}")
try:
x0, y0, x1, y1 = [int(coord) for coord in bbox]
x0 = max(0, x0 - padding)
y0 = max(0, y0 - padding)
x1 = min(img.width, x1 + padding)
y1 = min(img.height, y1 + padding)
if x0 >= x1 or y0 >= y1:
logger.debug("Invalid bbox dimensions")
return ""
region = img.crop((x0, y0, x1, y1))
region_np = np.array(region)
ocr_result = ocr.ocr(region_np, cls=True)
if not ocr_result or not ocr_result[0]:
logger.debug("No OCR results")
return ""
text_parts = [line[1][0] for line in ocr_result[0]]
result_text = " ".join(text_parts)
logger.debug(f"Extracted text: {result_text[:100]}...")
return result_text
except Exception as e:
logger.error(f"Error in extract_text_from_bbox: {e}", exc_info=True)
return ""
def process_document(file_path: str, target_width: Optional[int] = None):
"""Process a document and extract layout information."""
logger.info(f"Processing document: {file_path}")
try:
doc = fitz.open(file_path)
logger.info(f"Document opened successfully. Pages: {len(doc)}")
results = []
for page_num, page in enumerate(doc):
logger.info(f"Processing page {page_num + 1}/{len(doc)}")
try:
detected_regions, processed_img = detect_layout_regions(page, target_width=target_width)
# Group regions by type
figures = [r for r in detected_regions if r["type"] == 'figure']
figure_captions = [r for r in detected_regions if r["type"] == 'figure_caption']
tables = [r for r in detected_regions if r["type"] == 'table']
table_captions = [r for r in detected_regions if r["type"] == 'table_caption']
logger.debug(f"Found {len(figures)} figures, {len(figure_captions)} figure captions, {len(tables)} tables, {len(table_captions)} table captions")
image_entries = []
table_entries = []
# Match figures with their captions (caption usually BELOW figure)
for idx, figure in enumerate(figures, start=1):
figure_bbox = figure["bbox"]
best_caption = None
min_distance = float('inf')
for caption in figure_captions:
cap_bbox = caption["bbox"]
distance = cap_bbox[1] - figure_bbox[3]
if 0 <= distance < min_distance:
min_distance = distance
best_caption = caption
caption_text = extract_text_from_bbox(processed_img, best_caption["bbox"]) if best_caption else None
figure_number = extract_number_from_caption(caption_text) or str(idx)
image_entries.append({
"figure_number": figure_number,
"figure_bbox": figure_bbox,
"caption": caption_text,
"caption_bbox": best_caption["bbox"] if best_caption else None,
"confidence": figure["confidence"]
})
# Match tables with their captions (caption usually ABOVE table)
for idx, table in enumerate(tables, start=1):
table_bbox = table["bbox"]
best_caption = None
min_distance = float('inf')
for caption in table_captions:
cap_bbox = caption["bbox"]
distance = table_bbox[1] - cap_bbox[3]
if 0 <= distance < min_distance:
min_distance = distance
best_caption = caption
caption_text = extract_text_from_bbox(processed_img, best_caption["bbox"]) if best_caption else None
table_number = extract_number_from_caption(caption_text) or str(idx)
table_entries.append({
"table_number": table_number,
"bbox": table_bbox,
"caption": caption_text,
"caption_bbox": best_caption["bbox"] if best_caption else None,
"confidence": table["confidence"]
})
# Create annotated image
annotated_img = create_annotated_image(
processed_img,
image_entries,
table_entries
)
# Convert annotated image to base64
buffered = io.BytesIO()
annotated_img.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
results.append({
"page_number": page.number + 1,
"figures": image_entries,
"tables": table_entries,
"image_dimensions": {"width": processed_img.width, "height": processed_img.height},
"annotated_image": f"data:image/png;base64,{img_str}"
})
logger.info(f"Page {page_num + 1} processed: {len(image_entries)} figures, {len(table_entries)} tables")
except Exception as e:
logger.error(f"Error processing page {page_num + 1}: {e}", exc_info=True)
raise
doc.close()
logger.info(f"Document processing completed. Total pages: {len(results)}")
return results
except Exception as e:
logger.error(f"Error in process_document: {e}", exc_info=True)
raise
def create_annotated_image(img: Image.Image, figures: list, tables: list) -> Image.Image:
"""Create an annotated image with bounding boxes."""
# Create a copy to draw on
annotated = img.copy()
draw = ImageDraw.Draw(annotated)
# Try to load a font
try:
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", 20)
small_font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 14)
except:
font = ImageFont.load_default()
small_font = ImageFont.load_default()
# Draw tables (green boxes)
for table in tables:
bbox = table["bbox"]
caption_bbox = table.get("caption_bbox")
table_num = table.get("table_number", "?")
conf = table.get("confidence", 0)
# Draw table content box
draw.rectangle(bbox, outline="green", width=3)
draw.text(
(bbox[0] + 5, bbox[1] + 5),
f"Table {table_num} ({conf:.2f})",
fill="green",
font=font
)
# Draw caption box
if caption_bbox:
draw.rectangle(caption_bbox, outline="blue", width=2)
draw.text(
(caption_bbox[0], caption_bbox[1] - 20),
"Caption",
fill="blue",
font=small_font
)
# Draw figures (red boxes)
for figure in figures:
bbox = figure["figure_bbox"]
caption_bbox = figure.get("caption_bbox")
fig_num = figure.get("figure_number", "?")
conf = figure.get("confidence", 0)
# Draw figure content box
draw.rectangle(bbox, outline="red", width=3)
draw.text(
(bbox[0] + 5, bbox[1] + 5),
f"Figure {fig_num} ({conf:.2f})",
fill="red",
font=font
)
# Draw caption box
if caption_bbox:
draw.rectangle(caption_bbox, outline="blue", width=2)
draw.text(
(caption_bbox[0], caption_bbox[1] - 20),
"Caption",
fill="blue",
font=small_font
)
return annotated
# --- API Endpoints ---
@app.get("/", response_class=HTMLResponse)
async def read_root():
"""Serve the frontend UI"""
html_content = """
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Document Layout Analysis API</title>
<script src="https://cdn.tailwindcss.com"></script>
<style>
.card-grainy { filter: url(#grainy); }
</style>
</head>
<body class="bg-[#09090B] min-h-screen">
<svg class="absolute h-0 w-0">
<filter id="grainy">
<feTurbulence type="fractalNoise" baseFrequency="0.7" numOctaves="2" result="noise" />
<feComponentTransfer>
<feFuncA type="table" tableValues="0 0.15 0" />
</feComponentTransfer>
</filter>
</svg>
<div class="container mx-auto px-4 py-12">
<!-- Header -->
<div class="mb-12 text-center">
<h3 class="text-sm font-semibold tracking-wider text-cyan-400/90 uppercase mb-4">AI-Powered Document Analysis</h3>
<h1 class="text-5xl font-bold mb-4">
<span class="bg-gradient-to-r from-gray-100 to-gray-300 bg-clip-text text-transparent">Document Layout</span>
<span class="text-gray-600"> Detection API</span>
</h1>
<p class="text-gray-400 text-lg">Extract tables, figures, and captions from PDFs and images with precision</p>
</div>
<!-- Main Card -->
<div class="relative isolate max-w-4xl mx-auto rounded-3xl border border-white/10 bg-gradient-to-br from-[#1A1D29] via-[#151821] to-[#0F1117] p-10">
<div class="card-grainy absolute top-0 left-0 h-full w-full"></div>
<div class="pointer-events-none absolute top-0 left-0 h-96 w-96 rounded-full bg-blue-500/5 blur-3xl"></div>
<div class="relative">
<!-- Upload Section -->
<div class="mb-8">
<label class="block text-sm font-semibold text-gray-300 mb-4">Upload Document</label>
<div class="rounded-2xl bg-black/30 p-8 ring-1 ring-white/10 backdrop-blur-sm">
<input type="file" id="fileInput" accept=".pdf,.png,.jpg,.jpeg"
class="block w-full text-sm text-gray-400 file:mr-4 file:py-3 file:px-6 file:rounded-lg file:border-0 file:text-sm file:font-semibold file:bg-cyan-500/10 file:text-cyan-400 hover:file:bg-cyan-500/20 cursor-pointer">
</div>
</div>
<!-- OR Divider -->
<div class="flex items-center my-8">
<div class="flex-1 h-px bg-white/10"></div>
<span class="px-4 text-gray-500 text-sm font-semibold">OR</span>
<div class="flex-1 h-px bg-white/10"></div>
</div>
<!-- URL Section -->
<div class="mb-8">
<label class="block text-sm font-semibold text-gray-300 mb-4">Document URL</label>
<div class="rounded-2xl bg-black/30 p-8 ring-1 ring-white/10 backdrop-blur-sm">
<input type="url" id="urlInput" placeholder="https://example.com/document.pdf"
class="w-full bg-white/5 border border-white/10 rounded-lg px-4 py-3 text-gray-300 placeholder-gray-600 focus:outline-none focus:ring-2 focus:ring-cyan-500/50">
</div>
</div>
<!-- Resolution Section -->
<div class="mb-8">
<label class="block text-sm font-semibold text-gray-300 mb-4">
Target Width (Optional)
<span class="text-gray-500 text-xs font-normal ml-2">Leave empty for original size</span>
</label>
<div class="rounded-2xl bg-black/30 p-8 ring-1 ring-white/10 backdrop-blur-sm">
<input type="number" id="resolutionInput" placeholder="e.g., 1280" min="256" max="4096"
class="w-full bg-white/5 border border-white/10 rounded-lg px-4 py-3 text-gray-300 placeholder-gray-600 focus:outline-none focus:ring-2 focus:ring-cyan-500/50">
</div>
</div>
<!-- Analyze Button -->
<button id="analyzeBtn" onclick="analyzeDocument()"
class="w-full py-4 rounded-lg bg-gradient-to-r from-cyan-500 to-blue-500 text-white font-semibold text-lg hover:from-cyan-600 hover:to-blue-600 transition-all shadow-lg hover:shadow-cyan-500/25">
Analyze Document
</button>
<!-- Loading -->
<div id="loading" class="hidden mt-8 text-center">
<div class="inline-block animate-spin rounded-full h-12 w-12 border-4 border-cyan-500 border-t-transparent"></div>
<p class="text-gray-400 mt-4">Processing document...</p>
</div>
<!-- Results -->
<div id="results" class="hidden mt-8">
<h3 class="text-xl font-bold text-gray-300 mb-4">Analysis Results</h3>
<!-- Annotated Images -->
<div id="annotatedImages" class="mb-6 space-y-6"></div>
<!-- JSON Results -->
<div class="rounded-2xl bg-black/30 p-8 ring-1 ring-white/10 backdrop-blur-sm">
<div class="flex justify-between items-center mb-4">
<h4 class="text-lg font-semibold text-gray-300">JSON Output</h4>
<button onclick="toggleJSON()" class="px-4 py-2 rounded-lg bg-gray-500/10 text-gray-400 text-sm hover:bg-gray-500/20 transition-all">
<span id="toggleText">Show JSON</span>
</button>
</div>
<pre id="resultsContent" class="hidden text-sm text-gray-300 overflow-x-auto max-h-96"></pre>
</div>
<button onclick="downloadJSON()" class="mt-4 px-6 py-3 rounded-lg bg-emerald-500/10 text-emerald-400 font-semibold hover:bg-emerald-500/20 transition-all ring-1 ring-emerald-500/30">
Download JSON
</button>
</div>
<!-- Error -->
<div id="error" class="hidden mt-8 rounded-2xl bg-rose-500/10 p-6 ring-1 ring-rose-500/30">
<p class="text-rose-400 font-semibold" id="errorMessage"></p>
</div>
</div>
</div>
<!-- API Documentation -->
<div class="mt-16 max-w-4xl mx-auto">
<h2 class="text-3xl font-bold text-gray-300 mb-8">API Documentation</h2>
<div class="space-y-6">
<!-- Endpoint 1 -->
<div class="rounded-2xl border border-white/10 bg-gradient-to-br from-[#1A1D29] via-[#151821] to-[#0F1117] p-8">
<div class="flex items-center gap-3 mb-4">
<span class="inline-flex items-center rounded-lg bg-emerald-500/10 px-3 py-1.5 text-xs font-bold text-emerald-400 uppercase ring-1 ring-emerald-500/30">POST</span>
<code class="text-cyan-400 text-lg font-mono">/analyze</code>
</div>
<p class="text-gray-400 mb-4">Analyze a document by uploading a file</p>
<div class="bg-black/30 rounded-lg p-4 overflow-x-auto">
<pre class="text-sm text-gray-300"><code>curl -X POST "http://your-api-url/analyze" \\
-F "[email protected]" \\
-F "resolution=1280"</code></pre>
</div>
</div>
<!-- Endpoint 2 -->
<div class="rounded-2xl border border-white/10 bg-gradient-to-br from-[#1A1D29] via-[#151821] to-[#0F1117] p-8">
<div class="flex items-center gap-3 mb-4">
<span class="inline-flex items-center rounded-lg bg-emerald-500/10 px-3 py-1.5 text-xs font-bold text-emerald-400 uppercase ring-1 ring-emerald-500/30">POST</span>
<code class="text-cyan-400 text-lg font-mono">/analyze-url</code>
</div>
<p class="text-gray-400 mb-4">Analyze a document from a URL</p>
<div class="bg-black/30 rounded-lg p-4 overflow-x-auto">
<pre class="text-sm text-gray-300"><code>curl -X POST "http://your-api-url/analyze-url" \\
-H "Content-Type: application/json" \\
-d '{"url": "https://example.com/doc.pdf", "resolution": 1280}'</code></pre>
</div>
</div>
</div>
</div>
</div>
<script>
let analysisResults = null;
async function analyzeDocument() {
const fileInput = document.getElementById('fileInput');
const urlInput = document.getElementById('urlInput');
const resolutionInput = document.getElementById('resolutionInput');
const loading = document.getElementById('loading');
const resultsDiv = document.getElementById('results');
const errorDiv = document.getElementById('error');
const analyzeBtn = document.getElementById('analyzeBtn');
resultsDiv.classList.add('hidden');
errorDiv.classList.add('hidden');
analyzeBtn.disabled = true;
analyzeBtn.textContent = 'Analyzing...';
const resolution = resolutionInput.value ? parseInt(resolutionInput.value) : null;
try {
loading.classList.remove('hidden');
let response;
if (fileInput.files.length > 0) {
const formData = new FormData();
formData.append('file', fileInput.files[0]);
if (resolution) formData.append('resolution', resolution);
response = await fetch('/analyze', {
method: 'POST',
body: formData
});
} else if (urlInput.value) {
const body = { url: urlInput.value };
if (resolution) body.resolution = resolution;
response = await fetch('/analyze-url', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify(body)
});
} else {
throw new Error('Please provide a file or URL');
}
const responseData = await response.json();
if (!response.ok) {
throw new Error(responseData.detail || 'Analysis failed with status ' + response.status);
}
analysisResults = responseData;
// Display annotated images
displayAnnotatedImages(responseData.results);
// Prepare JSON without base64 images for display
const jsonForDisplay = {
...responseData,
results: responseData.results.map(r => {
const {annotated_image, ...rest} = r;
return rest;
})
};
document.getElementById('resultsContent').textContent = JSON.stringify(jsonForDisplay, null, 2);
resultsDiv.classList.remove('hidden');
} catch (err) {
document.getElementById('errorMessage').textContent = err.message;
errorDiv.classList.remove('hidden');
} finally {
loading.classList.add('hidden');
analyzeBtn.disabled = false;
analyzeBtn.textContent = 'Analyze Document';
}
}
function displayAnnotatedImages(results) {
const container = document.getElementById('annotatedImages');
container.innerHTML = '';
results.forEach((page, idx) => {
if (page.annotated_image) {
const pageDiv = document.createElement('div');
pageDiv.className = 'rounded-2xl bg-black/30 p-6 ring-1 ring-white/10 backdrop-blur-sm';
const title = document.createElement('h4');
title.className = 'text-lg font-semibold text-gray-300 mb-4';
title.textContent = `Page ${page.page_number}`;
const stats = document.createElement('div');
stats.className = 'text-sm text-gray-400 mb-4 flex gap-6';
stats.innerHTML = `
<span class="flex items-center gap-2">
<span class="inline-block w-3 h-3 bg-red-500 rounded"></span>
${page.figures.length} Figure${page.figures.length !== 1 ? 's' : ''}
</span>
<span class="flex items-center gap-2">
<span class="inline-block w-3 h-3 bg-green-500 rounded"></span>
${page.tables.length} Table${page.tables.length !== 1 ? 's' : ''}
</span>
<span class="flex items-center gap-2">
<span class="inline-block w-3 h-3 bg-blue-500 rounded"></span>
Captions
</span>
`;
const img = document.createElement('img');
img.src = page.annotated_image;
img.className = 'w-full rounded-lg border border-white/10';
img.alt = `Annotated page ${page.page_number}`;
pageDiv.appendChild(title);
pageDiv.appendChild(stats);
pageDiv.appendChild(img);
container.appendChild(pageDiv);
}
});
}
function toggleJSON() {
const jsonContent = document.getElementById('resultsContent');
const toggleText = document.getElementById('toggleText');
if (jsonContent.classList.contains('hidden')) {
jsonContent.classList.remove('hidden');
toggleText.textContent = 'Hide JSON';
} else {
jsonContent.classList.add('hidden');
toggleText.textContent = 'Show JSON';
}
}
function downloadJSON() {
if (!analysisResults) return;
// Remove base64 images from download to reduce file size
const downloadData = {
...analysisResults,
results: analysisResults.results.map(r => {
const {annotated_image, ...rest} = r;
return rest;
})
};
const blob = new Blob([JSON.stringify(downloadData, null, 2)], { type: 'application/json' });
const url = URL.createObjectURL(blob);
const a = document.createElement('a');
a.href = url;
a.download = 'layout_analysis.json';
a.click();
URL.revokeObjectURL(url);
}
</script>
</body>
</html>
"""
return HTMLResponse(content=html_content)
@app.post("/analyze")
async def analyze_file(file: UploadFile = File(...), resolution: Optional[int] = Form(None)):
"""Analyze an uploaded document file"""
logger.info(f"Received file upload: {file.filename}, resolution: {resolution}")
tmp_path = None
try:
with tempfile.NamedTemporaryFile(delete=False, suffix=Path(file.filename).suffix) as tmp:
content = await file.read()
tmp.write(content)
tmp_path = tmp.name
logger.info(f"Processing file: {tmp_path}")
results = process_document(tmp_path, target_width=resolution)
return JSONResponse(content={
"status": "success",
"filename": file.filename,
"pages": len(results),
"results": results
})
except Exception as e:
logger.error(f"Error analyzing file {file.filename}: {e}", exc_info=True)
raise HTTPException(status_code=500, detail=f"Analysis failed: {str(e)}")
finally:
if tmp_path and os.path.exists(tmp_path):
os.unlink(tmp_path)
logger.debug(f"Cleaned up temporary file: {tmp_path}")
@app.post("/analyze-url")
async def analyze_url(request: URLRequest):
"""Analyze a document from a URL"""
logger.info(f"Received URL request: {request.url}, resolution: {request.resolution}")
tmp_path = None
try:
logger.info("Downloading file from URL...")
response = requests.get(str(request.url), timeout=30)
response.raise_for_status()
logger.info(f"File downloaded. Size: {len(response.content)} bytes")
content_type = response.headers.get('content-type', '')
ext = '.pdf' if 'pdf' in content_type else '.png'
with tempfile.NamedTemporaryFile(delete=False, suffix=ext) as tmp:
tmp.write(response.content)
tmp_path = tmp.name
logger.info(f"Processing file: {tmp_path}")
results = process_document(tmp_path, target_width=request.resolution)
return JSONResponse(content={
"status": "success",
"url": str(request.url),
"pages": len(results),
"results": results
})
except requests.RequestException as e:
logger.error(f"Failed to download file from {request.url}: {e}", exc_info=True)
raise HTTPException(status_code=400, detail=f"Failed to download file: {str(e)}")
except Exception as e:
logger.error(f"Error analyzing URL {request.url}: {e}", exc_info=True)
raise HTTPException(status_code=500, detail=f"Analysis failed: {str(e)}")
finally:
if tmp_path and os.path.exists(tmp_path):
os.unlink(tmp_path)
logger.debug(f"Cleaned up temporary file: {tmp_path}")
@app.get("/health")
async def health_check():
"""Health check endpoint"""
return {
"status": "healthy",
"device": device,
"models_loaded": {
"ocr": ocr is not None,
"layout_model": layout_model is not None
}
}
if __name__ == "__main__":
import uvicorn
logger.info("Starting Document Layout Analysis API server...")
uvicorn.run(app, host="0.0.0.0", port=7860)