Spaces:
Paused
Paused
File size: 33,207 Bytes
d97b9d2 ec7941d e21ff55 d97b9d2 ec7941d ee69d03 d97b9d2 ec7941d d97b9d2 ec7941d d97b9d2 ee69d03 ec7941d d97b9d2 ec7941d d97b9d2 e21ff55 ec7941d e21ff55 ec7941d e21ff55 5a193cc ec7941d e21ff55 ec7941d e21ff55 ec7941d d97b9d2 ec7941d d97b9d2 ec7941d d97b9d2 e21ff55 ec7941d f7b013c ec7941d e21ff55 395484c e21ff55 9e89f9b e21ff55 ec7941d e21ff55 ec7941d ee69d03 ec7941d d97b9d2 ec7941d d97b9d2 ec7941d d97b9d2 604adea d97b9d2 ec7941d e21ff55 ec7941d e21ff55 ec7941d e21ff55 ec7941d e21ff55 ec7941d e21ff55 ec7941d e21ff55 d97b9d2 ec7941d e21ff55 d97b9d2 e21ff55 d97b9d2 ec7941d d97b9d2 ec7941d e21ff55 ec7941d e21ff55 d97b9d2 e21ff55 ee69d03 e21ff55 ee69d03 e21ff55 ec7941d e21ff55 d97b9d2 ee69d03 ec7941d d97b9d2 ee69d03 d97b9d2 ee69d03 d97b9d2 ee69d03 d97b9d2 ec7941d d97b9d2 ec7941d d97b9d2 ec7941d d97b9d2 ec7941d ee69d03 ec7941d d97b9d2 ec7941d d97b9d2 ec7941d d97b9d2 ee69d03 d97b9d2 ee69d03 d97b9d2 ec7941d d97b9d2 ec7941d e21ff55 d97b9d2 ec7941d e21ff55 d97b9d2 e21ff55 d97b9d2 ec7941d e21ff55 ec7941d e21ff55 ec7941d d97b9d2 ec7941d e21ff55 d97b9d2 e21ff55 d97b9d2 e21ff55 ec7941d d97b9d2 ec7941d d97b9d2 ec7941d e21ff55 d97b9d2 e21ff55 d97b9d2 ec7941d e21ff55 d97b9d2 ec7941d e21ff55 ec7941d e21ff55 ec7941d d97b9d2 ec7941d d97b9d2 ec7941d d97b9d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 |
import os
import io
import json
import logging
import sys
import tempfile
import re
import base64
from pathlib import Path
from typing import Optional
import fitz # PyMuPDF
import numpy as np
import requests
import torch
import torchvision
from PIL import Image, ImageDraw, ImageFont
from fastapi import FastAPI, File, Form, HTTPException, UploadFile
from fastapi.responses import HTMLResponse, JSONResponse
from paddleocr import PaddleOCR
from pydantic import BaseModel, HttpUrl
# --- Configure Logging ---
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
handlers=[logging.StreamHandler(sys.stdout)]
)
logger = logging.getLogger(__name__)
logger.info("Starting application initialization...")
# --- Configuration ---
MODEL_PATH = "/content/layout-model.pt"
# --- Global Variables ---
ocr: Optional[PaddleOCR] = None
layout_model = None
device: str = 'cuda' if torch.cuda.is_available() else 'cpu'
# Label mapping
id_to_names = {
0: 'title', 1: 'plain text', 2: 'abandon', 3: 'figure', 4: 'figure_caption',
5: 'table', 6: 'table_caption', 7: 'table_footnote', 8: 'isolate_formula',
9: 'formula_caption'
}
# --- FastAPI Application ---
app = FastAPI(title="Document Layout Analysis API", version="1.0.0")
# --- FastAPI Startup Event ---
@app.on_event("startup")
async def startup_event():
global ocr, layout_model
lang="en"
try:
logger.info("Initializing PaddleOCR...")
ocr = PaddleOCR(
use_angle_cls=True,
lang=lang,
use_gpu=False,
show_log=False,
det_model_dir=f'/app/models/det/{lang}/en_PP-OCRv3_det_infer',
rec_model_dir=f'/app/models/rec/{lang}/en_PP-OCRv4_rec_infer',
cls_model_dir=f'/app/models/cls/{lang}/ch_ppocr_mobile_v2.0_cls_infer'
)
logger.info("✓ PaddleOCR initialized successfully")
except Exception as e:
logger.error(f"Failed to initialize PaddleOCR: {e}", exc_info=True)
raise RuntimeError("Could not initialize PaddleOCR") from e
try:
logger.info(f"Loading DocLayout-YOLO model from {MODEL_PATH}...")
if not os.path.exists(MODEL_PATH):
logger.error(f"Model file not found at {MODEL_PATH}")
raise FileNotFoundError(f"Model file not found at {MODEL_PATH}")
# Import YOLOv10 from doclayout_yolo
from doclayout_yolo import YOLOv10
layout_model = YOLOv10(MODEL_PATH)
logger.info(f"✓ DocLayout-YOLO model loaded successfully on device: {device}")
except Exception as e:
logger.error(f"Failed to load DocLayout-YOLO model: {e}", exc_info=True)
raise RuntimeError("Could not load layout model") from e
# --- Pydantic Request Models ---
class URLRequest(BaseModel):
url: HttpUrl
resolution: Optional[int] = None
# --- Helper Functions ---
def extract_number_from_caption(caption_text: str) -> Optional[str]:
"""Extract the number from a caption like 'Table 3' or 'Figure 2.1'"""
if not caption_text:
return None
NUMBER_PATTERN = re.compile(r"(?:Table|Figure)\s*([\d\.]+)", re.IGNORECASE)
match = NUMBER_PATTERN.search(caption_text)
return match.group(1) if match else None
def detect_layout_regions(page: fitz.Page, target_width: Optional[int] = None, conf_threshold=0.25, iou_threshold=0.3):
"""Use DocLayout-YOLO to detect document elements."""
if layout_model is None:
raise RuntimeError("Layout model is not initialized.")
logger.debug(f"Detecting layout regions with target_width={target_width}")
try:
pix = page.get_pixmap(dpi=150)
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
if target_width:
aspect_ratio = img.height / img.width
target_height = int(target_width * aspect_ratio)
img = img.resize((target_width, target_height), Image.LANCZOS)
logger.debug(f"Resized image to {target_width}x{target_height}")
logger.debug(f"Running model prediction on image size: {img.width}x{img.height}")
# Run prediction using YOLOv10
results = layout_model.predict(
img,
imgsz=1280,
conf=conf_threshold,
device=device
)
# Get first result
det_res = results[0]
# Access boxes using the correct API
boxes = det_res.boxes.xyxy.cpu().numpy()
classes = det_res.boxes.cls.cpu().numpy()
scores = det_res.boxes.conf.cpu().numpy()
logger.debug(f"Detected {len(boxes)} boxes before NMS")
if len(boxes) == 0:
logger.info("No objects detected")
return [], img
# Apply NMS
boxes_tensor = torch.from_numpy(boxes)
scores_tensor = torch.from_numpy(scores)
indices = torchvision.ops.nms(boxes_tensor, scores_tensor, iou_threshold)
boxes = boxes[indices.numpy()]
scores = scores[indices.numpy()]
classes = classes[indices.numpy()]
logger.debug(f"Detected {len(boxes)} boxes after NMS")
detected_regions = []
for box, score, cls in zip(boxes, scores, classes):
box = [float(coord) for coord in box]
label_name = id_to_names.get(int(cls), 'unknown')
detected_regions.append({
"bbox": box,
"type": label_name,
"confidence": float(score)
})
logger.debug(f"Returning {len(detected_regions)} detected regions")
return detected_regions, img
except Exception as e:
logger.error(f"Error in detect_layout_regions: {e}", exc_info=True)
raise
def extract_text_from_bbox(img: Image.Image, bbox: list, padding: int = 5) -> str:
"""Run OCR on a specific bounding box region of a PIL Image."""
if ocr is None:
raise RuntimeError("OCR model is not initialized.")
logger.debug(f"Extracting text from bbox: {bbox}")
try:
x0, y0, x1, y1 = [int(coord) for coord in bbox]
x0 = max(0, x0 - padding)
y0 = max(0, y0 - padding)
x1 = min(img.width, x1 + padding)
y1 = min(img.height, y1 + padding)
if x0 >= x1 or y0 >= y1:
logger.debug("Invalid bbox dimensions")
return ""
region = img.crop((x0, y0, x1, y1))
region_np = np.array(region)
ocr_result = ocr.ocr(region_np, cls=True)
if not ocr_result or not ocr_result[0]:
logger.debug("No OCR results")
return ""
text_parts = [line[1][0] for line in ocr_result[0]]
result_text = " ".join(text_parts)
logger.debug(f"Extracted text: {result_text[:100]}...")
return result_text
except Exception as e:
logger.error(f"Error in extract_text_from_bbox: {e}", exc_info=True)
return ""
def process_document(file_path: str, target_width: Optional[int] = None):
"""Process a document and extract layout information."""
logger.info(f"Processing document: {file_path}")
try:
doc = fitz.open(file_path)
logger.info(f"Document opened successfully. Pages: {len(doc)}")
results = []
for page_num, page in enumerate(doc):
logger.info(f"Processing page {page_num + 1}/{len(doc)}")
try:
detected_regions, processed_img = detect_layout_regions(page, target_width=target_width)
# Group regions by type
figures = [r for r in detected_regions if r["type"] == 'figure']
figure_captions = [r for r in detected_regions if r["type"] == 'figure_caption']
tables = [r for r in detected_regions if r["type"] == 'table']
table_captions = [r for r in detected_regions if r["type"] == 'table_caption']
logger.debug(f"Found {len(figures)} figures, {len(figure_captions)} figure captions, {len(tables)} tables, {len(table_captions)} table captions")
image_entries = []
table_entries = []
# Match figures with their captions (caption usually BELOW figure)
for idx, figure in enumerate(figures, start=1):
figure_bbox = figure["bbox"]
best_caption = None
min_distance = float('inf')
for caption in figure_captions:
cap_bbox = caption["bbox"]
distance = cap_bbox[1] - figure_bbox[3]
if 0 <= distance < min_distance:
min_distance = distance
best_caption = caption
caption_text = extract_text_from_bbox(processed_img, best_caption["bbox"]) if best_caption else None
figure_number = extract_number_from_caption(caption_text) or str(idx)
image_entries.append({
"figure_number": figure_number,
"figure_bbox": figure_bbox,
"caption": caption_text,
"caption_bbox": best_caption["bbox"] if best_caption else None,
"confidence": figure["confidence"]
})
# Match tables with their captions (caption usually ABOVE table)
for idx, table in enumerate(tables, start=1):
table_bbox = table["bbox"]
best_caption = None
min_distance = float('inf')
for caption in table_captions:
cap_bbox = caption["bbox"]
distance = table_bbox[1] - cap_bbox[3]
if 0 <= distance < min_distance:
min_distance = distance
best_caption = caption
caption_text = extract_text_from_bbox(processed_img, best_caption["bbox"]) if best_caption else None
table_number = extract_number_from_caption(caption_text) or str(idx)
table_entries.append({
"table_number": table_number,
"bbox": table_bbox,
"caption": caption_text,
"caption_bbox": best_caption["bbox"] if best_caption else None,
"confidence": table["confidence"]
})
# Create annotated image
annotated_img = create_annotated_image(
processed_img,
image_entries,
table_entries
)
# Convert annotated image to base64
buffered = io.BytesIO()
annotated_img.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
results.append({
"page_number": page.number + 1,
"figures": image_entries,
"tables": table_entries,
"image_dimensions": {"width": processed_img.width, "height": processed_img.height},
"annotated_image": f"data:image/png;base64,{img_str}"
})
logger.info(f"Page {page_num + 1} processed: {len(image_entries)} figures, {len(table_entries)} tables")
except Exception as e:
logger.error(f"Error processing page {page_num + 1}: {e}", exc_info=True)
raise
doc.close()
logger.info(f"Document processing completed. Total pages: {len(results)}")
return results
except Exception as e:
logger.error(f"Error in process_document: {e}", exc_info=True)
raise
def create_annotated_image(img: Image.Image, figures: list, tables: list) -> Image.Image:
"""Create an annotated image with bounding boxes."""
# Create a copy to draw on
annotated = img.copy()
draw = ImageDraw.Draw(annotated)
# Try to load a font
try:
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", 20)
small_font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 14)
except:
font = ImageFont.load_default()
small_font = ImageFont.load_default()
# Draw tables (green boxes)
for table in tables:
bbox = table["bbox"]
caption_bbox = table.get("caption_bbox")
table_num = table.get("table_number", "?")
conf = table.get("confidence", 0)
# Draw table content box
draw.rectangle(bbox, outline="green", width=3)
draw.text(
(bbox[0] + 5, bbox[1] + 5),
f"Table {table_num} ({conf:.2f})",
fill="green",
font=font
)
# Draw caption box
if caption_bbox:
draw.rectangle(caption_bbox, outline="blue", width=2)
draw.text(
(caption_bbox[0], caption_bbox[1] - 20),
"Caption",
fill="blue",
font=small_font
)
# Draw figures (red boxes)
for figure in figures:
bbox = figure["figure_bbox"]
caption_bbox = figure.get("caption_bbox")
fig_num = figure.get("figure_number", "?")
conf = figure.get("confidence", 0)
# Draw figure content box
draw.rectangle(bbox, outline="red", width=3)
draw.text(
(bbox[0] + 5, bbox[1] + 5),
f"Figure {fig_num} ({conf:.2f})",
fill="red",
font=font
)
# Draw caption box
if caption_bbox:
draw.rectangle(caption_bbox, outline="blue", width=2)
draw.text(
(caption_bbox[0], caption_bbox[1] - 20),
"Caption",
fill="blue",
font=small_font
)
return annotated
# --- API Endpoints ---
@app.get("/", response_class=HTMLResponse)
async def read_root():
"""Serve the frontend UI"""
html_content = """
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Document Layout Analysis API</title>
<script src="https://cdn.tailwindcss.com"></script>
<style>
.card-grainy { filter: url(#grainy); }
</style>
</head>
<body class="bg-[#09090B] min-h-screen">
<svg class="absolute h-0 w-0">
<filter id="grainy">
<feTurbulence type="fractalNoise" baseFrequency="0.7" numOctaves="2" result="noise" />
<feComponentTransfer>
<feFuncA type="table" tableValues="0 0.15 0" />
</feComponentTransfer>
</filter>
</svg>
<div class="container mx-auto px-4 py-12">
<!-- Header -->
<div class="mb-12 text-center">
<h3 class="text-sm font-semibold tracking-wider text-cyan-400/90 uppercase mb-4">AI-Powered Document Analysis</h3>
<h1 class="text-5xl font-bold mb-4">
<span class="bg-gradient-to-r from-gray-100 to-gray-300 bg-clip-text text-transparent">Document Layout</span>
<span class="text-gray-600"> Detection API</span>
</h1>
<p class="text-gray-400 text-lg">Extract tables, figures, and captions from PDFs and images with precision</p>
</div>
<!-- Main Card -->
<div class="relative isolate max-w-4xl mx-auto rounded-3xl border border-white/10 bg-gradient-to-br from-[#1A1D29] via-[#151821] to-[#0F1117] p-10">
<div class="card-grainy absolute top-0 left-0 h-full w-full"></div>
<div class="pointer-events-none absolute top-0 left-0 h-96 w-96 rounded-full bg-blue-500/5 blur-3xl"></div>
<div class="relative">
<!-- Upload Section -->
<div class="mb-8">
<label class="block text-sm font-semibold text-gray-300 mb-4">Upload Document</label>
<div class="rounded-2xl bg-black/30 p-8 ring-1 ring-white/10 backdrop-blur-sm">
<input type="file" id="fileInput" accept=".pdf,.png,.jpg,.jpeg"
class="block w-full text-sm text-gray-400 file:mr-4 file:py-3 file:px-6 file:rounded-lg file:border-0 file:text-sm file:font-semibold file:bg-cyan-500/10 file:text-cyan-400 hover:file:bg-cyan-500/20 cursor-pointer">
</div>
</div>
<!-- OR Divider -->
<div class="flex items-center my-8">
<div class="flex-1 h-px bg-white/10"></div>
<span class="px-4 text-gray-500 text-sm font-semibold">OR</span>
<div class="flex-1 h-px bg-white/10"></div>
</div>
<!-- URL Section -->
<div class="mb-8">
<label class="block text-sm font-semibold text-gray-300 mb-4">Document URL</label>
<div class="rounded-2xl bg-black/30 p-8 ring-1 ring-white/10 backdrop-blur-sm">
<input type="url" id="urlInput" placeholder="https://example.com/document.pdf"
class="w-full bg-white/5 border border-white/10 rounded-lg px-4 py-3 text-gray-300 placeholder-gray-600 focus:outline-none focus:ring-2 focus:ring-cyan-500/50">
</div>
</div>
<!-- Resolution Section -->
<div class="mb-8">
<label class="block text-sm font-semibold text-gray-300 mb-4">
Target Width (Optional)
<span class="text-gray-500 text-xs font-normal ml-2">Leave empty for original size</span>
</label>
<div class="rounded-2xl bg-black/30 p-8 ring-1 ring-white/10 backdrop-blur-sm">
<input type="number" id="resolutionInput" placeholder="e.g., 1280" min="256" max="4096"
class="w-full bg-white/5 border border-white/10 rounded-lg px-4 py-3 text-gray-300 placeholder-gray-600 focus:outline-none focus:ring-2 focus:ring-cyan-500/50">
</div>
</div>
<!-- Analyze Button -->
<button id="analyzeBtn" onclick="analyzeDocument()"
class="w-full py-4 rounded-lg bg-gradient-to-r from-cyan-500 to-blue-500 text-white font-semibold text-lg hover:from-cyan-600 hover:to-blue-600 transition-all shadow-lg hover:shadow-cyan-500/25">
Analyze Document
</button>
<!-- Loading -->
<div id="loading" class="hidden mt-8 text-center">
<div class="inline-block animate-spin rounded-full h-12 w-12 border-4 border-cyan-500 border-t-transparent"></div>
<p class="text-gray-400 mt-4">Processing document...</p>
</div>
<!-- Results -->
<div id="results" class="hidden mt-8">
<h3 class="text-xl font-bold text-gray-300 mb-4">Analysis Results</h3>
<!-- Annotated Images -->
<div id="annotatedImages" class="mb-6 space-y-6"></div>
<!-- JSON Results -->
<div class="rounded-2xl bg-black/30 p-8 ring-1 ring-white/10 backdrop-blur-sm">
<div class="flex justify-between items-center mb-4">
<h4 class="text-lg font-semibold text-gray-300">JSON Output</h4>
<button onclick="toggleJSON()" class="px-4 py-2 rounded-lg bg-gray-500/10 text-gray-400 text-sm hover:bg-gray-500/20 transition-all">
<span id="toggleText">Show JSON</span>
</button>
</div>
<pre id="resultsContent" class="hidden text-sm text-gray-300 overflow-x-auto max-h-96"></pre>
</div>
<button onclick="downloadJSON()" class="mt-4 px-6 py-3 rounded-lg bg-emerald-500/10 text-emerald-400 font-semibold hover:bg-emerald-500/20 transition-all ring-1 ring-emerald-500/30">
Download JSON
</button>
</div>
<!-- Error -->
<div id="error" class="hidden mt-8 rounded-2xl bg-rose-500/10 p-6 ring-1 ring-rose-500/30">
<p class="text-rose-400 font-semibold" id="errorMessage"></p>
</div>
</div>
</div>
<!-- API Documentation -->
<div class="mt-16 max-w-4xl mx-auto">
<h2 class="text-3xl font-bold text-gray-300 mb-8">API Documentation</h2>
<div class="space-y-6">
<!-- Endpoint 1 -->
<div class="rounded-2xl border border-white/10 bg-gradient-to-br from-[#1A1D29] via-[#151821] to-[#0F1117] p-8">
<div class="flex items-center gap-3 mb-4">
<span class="inline-flex items-center rounded-lg bg-emerald-500/10 px-3 py-1.5 text-xs font-bold text-emerald-400 uppercase ring-1 ring-emerald-500/30">POST</span>
<code class="text-cyan-400 text-lg font-mono">/analyze</code>
</div>
<p class="text-gray-400 mb-4">Analyze a document by uploading a file</p>
<div class="bg-black/30 rounded-lg p-4 overflow-x-auto">
<pre class="text-sm text-gray-300"><code>curl -X POST "http://your-api-url/analyze" \\
-F "[email protected]" \\
-F "resolution=1280"</code></pre>
</div>
</div>
<!-- Endpoint 2 -->
<div class="rounded-2xl border border-white/10 bg-gradient-to-br from-[#1A1D29] via-[#151821] to-[#0F1117] p-8">
<div class="flex items-center gap-3 mb-4">
<span class="inline-flex items-center rounded-lg bg-emerald-500/10 px-3 py-1.5 text-xs font-bold text-emerald-400 uppercase ring-1 ring-emerald-500/30">POST</span>
<code class="text-cyan-400 text-lg font-mono">/analyze-url</code>
</div>
<p class="text-gray-400 mb-4">Analyze a document from a URL</p>
<div class="bg-black/30 rounded-lg p-4 overflow-x-auto">
<pre class="text-sm text-gray-300"><code>curl -X POST "http://your-api-url/analyze-url" \\
-H "Content-Type: application/json" \\
-d '{"url": "https://example.com/doc.pdf", "resolution": 1280}'</code></pre>
</div>
</div>
</div>
</div>
</div>
<script>
let analysisResults = null;
async function analyzeDocument() {
const fileInput = document.getElementById('fileInput');
const urlInput = document.getElementById('urlInput');
const resolutionInput = document.getElementById('resolutionInput');
const loading = document.getElementById('loading');
const resultsDiv = document.getElementById('results');
const errorDiv = document.getElementById('error');
const analyzeBtn = document.getElementById('analyzeBtn');
resultsDiv.classList.add('hidden');
errorDiv.classList.add('hidden');
analyzeBtn.disabled = true;
analyzeBtn.textContent = 'Analyzing...';
const resolution = resolutionInput.value ? parseInt(resolutionInput.value) : null;
try {
loading.classList.remove('hidden');
let response;
if (fileInput.files.length > 0) {
const formData = new FormData();
formData.append('file', fileInput.files[0]);
if (resolution) formData.append('resolution', resolution);
response = await fetch('/analyze', {
method: 'POST',
body: formData
});
} else if (urlInput.value) {
const body = { url: urlInput.value };
if (resolution) body.resolution = resolution;
response = await fetch('/analyze-url', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify(body)
});
} else {
throw new Error('Please provide a file or URL');
}
const responseData = await response.json();
if (!response.ok) {
throw new Error(responseData.detail || 'Analysis failed with status ' + response.status);
}
analysisResults = responseData;
// Display annotated images
displayAnnotatedImages(responseData.results);
// Prepare JSON without base64 images for display
const jsonForDisplay = {
...responseData,
results: responseData.results.map(r => {
const {annotated_image, ...rest} = r;
return rest;
})
};
document.getElementById('resultsContent').textContent = JSON.stringify(jsonForDisplay, null, 2);
resultsDiv.classList.remove('hidden');
} catch (err) {
document.getElementById('errorMessage').textContent = err.message;
errorDiv.classList.remove('hidden');
} finally {
loading.classList.add('hidden');
analyzeBtn.disabled = false;
analyzeBtn.textContent = 'Analyze Document';
}
}
function displayAnnotatedImages(results) {
const container = document.getElementById('annotatedImages');
container.innerHTML = '';
results.forEach((page, idx) => {
if (page.annotated_image) {
const pageDiv = document.createElement('div');
pageDiv.className = 'rounded-2xl bg-black/30 p-6 ring-1 ring-white/10 backdrop-blur-sm';
const title = document.createElement('h4');
title.className = 'text-lg font-semibold text-gray-300 mb-4';
title.textContent = `Page ${page.page_number}`;
const stats = document.createElement('div');
stats.className = 'text-sm text-gray-400 mb-4 flex gap-6';
stats.innerHTML = `
<span class="flex items-center gap-2">
<span class="inline-block w-3 h-3 bg-red-500 rounded"></span>
${page.figures.length} Figure${page.figures.length !== 1 ? 's' : ''}
</span>
<span class="flex items-center gap-2">
<span class="inline-block w-3 h-3 bg-green-500 rounded"></span>
${page.tables.length} Table${page.tables.length !== 1 ? 's' : ''}
</span>
<span class="flex items-center gap-2">
<span class="inline-block w-3 h-3 bg-blue-500 rounded"></span>
Captions
</span>
`;
const img = document.createElement('img');
img.src = page.annotated_image;
img.className = 'w-full rounded-lg border border-white/10';
img.alt = `Annotated page ${page.page_number}`;
pageDiv.appendChild(title);
pageDiv.appendChild(stats);
pageDiv.appendChild(img);
container.appendChild(pageDiv);
}
});
}
function toggleJSON() {
const jsonContent = document.getElementById('resultsContent');
const toggleText = document.getElementById('toggleText');
if (jsonContent.classList.contains('hidden')) {
jsonContent.classList.remove('hidden');
toggleText.textContent = 'Hide JSON';
} else {
jsonContent.classList.add('hidden');
toggleText.textContent = 'Show JSON';
}
}
function downloadJSON() {
if (!analysisResults) return;
// Remove base64 images from download to reduce file size
const downloadData = {
...analysisResults,
results: analysisResults.results.map(r => {
const {annotated_image, ...rest} = r;
return rest;
})
};
const blob = new Blob([JSON.stringify(downloadData, null, 2)], { type: 'application/json' });
const url = URL.createObjectURL(blob);
const a = document.createElement('a');
a.href = url;
a.download = 'layout_analysis.json';
a.click();
URL.revokeObjectURL(url);
}
</script>
</body>
</html>
"""
return HTMLResponse(content=html_content)
@app.post("/analyze")
async def analyze_file(file: UploadFile = File(...), resolution: Optional[int] = Form(None)):
"""Analyze an uploaded document file"""
logger.info(f"Received file upload: {file.filename}, resolution: {resolution}")
tmp_path = None
try:
with tempfile.NamedTemporaryFile(delete=False, suffix=Path(file.filename).suffix) as tmp:
content = await file.read()
tmp.write(content)
tmp_path = tmp.name
logger.info(f"Processing file: {tmp_path}")
results = process_document(tmp_path, target_width=resolution)
return JSONResponse(content={
"status": "success",
"filename": file.filename,
"pages": len(results),
"results": results
})
except Exception as e:
logger.error(f"Error analyzing file {file.filename}: {e}", exc_info=True)
raise HTTPException(status_code=500, detail=f"Analysis failed: {str(e)}")
finally:
if tmp_path and os.path.exists(tmp_path):
os.unlink(tmp_path)
logger.debug(f"Cleaned up temporary file: {tmp_path}")
@app.post("/analyze-url")
async def analyze_url(request: URLRequest):
"""Analyze a document from a URL"""
logger.info(f"Received URL request: {request.url}, resolution: {request.resolution}")
tmp_path = None
try:
logger.info("Downloading file from URL...")
response = requests.get(str(request.url), timeout=30)
response.raise_for_status()
logger.info(f"File downloaded. Size: {len(response.content)} bytes")
content_type = response.headers.get('content-type', '')
ext = '.pdf' if 'pdf' in content_type else '.png'
with tempfile.NamedTemporaryFile(delete=False, suffix=ext) as tmp:
tmp.write(response.content)
tmp_path = tmp.name
logger.info(f"Processing file: {tmp_path}")
results = process_document(tmp_path, target_width=request.resolution)
return JSONResponse(content={
"status": "success",
"url": str(request.url),
"pages": len(results),
"results": results
})
except requests.RequestException as e:
logger.error(f"Failed to download file from {request.url}: {e}", exc_info=True)
raise HTTPException(status_code=400, detail=f"Failed to download file: {str(e)}")
except Exception as e:
logger.error(f"Error analyzing URL {request.url}: {e}", exc_info=True)
raise HTTPException(status_code=500, detail=f"Analysis failed: {str(e)}")
finally:
if tmp_path and os.path.exists(tmp_path):
os.unlink(tmp_path)
logger.debug(f"Cleaned up temporary file: {tmp_path}")
@app.get("/health")
async def health_check():
"""Health check endpoint"""
return {
"status": "healthy",
"device": device,
"models_loaded": {
"ocr": ocr is not None,
"layout_model": layout_model is not None
}
}
if __name__ == "__main__":
import uvicorn
logger.info("Starting Document Layout Analysis API server...")
uvicorn.run(app, host="0.0.0.0", port=7860) |