Spaces:
Sleeping
Sleeping
| # Copyright 2024 The HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # The MIT License | |
| # Copyright (c) 2025 Albert Murienne | |
| # Permission is hereby granted, free of charge, to any person obtaining a copy | |
| # of this software and associated documentation files (the "Software"), to deal | |
| # in the Software without restriction, including without limitation the rights | |
| # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
| # copies of the Software, and to permit persons to whom the Software is | |
| # furnished to do so, subject to the following conditions: | |
| # The above copyright notice and this permission notice shall be included in | |
| # all copies or substantial portions of the Software. | |
| # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
| # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
| # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
| # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
| # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
| # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | |
| # THE SOFTWARE. | |
| import re | |
| from typing import Generator | |
| from smolagents.agent_types import AgentAudio, AgentImage, AgentText | |
| from smolagents.agents import MultiStepAgent, PlanningStep | |
| from smolagents.memory import ActionStep, FinalAnswerStep | |
| from smolagents.models import ChatMessageStreamDelta, MessageRole, agglomerate_stream_deltas | |
| FINAL_ANSWER_TAG = "Final answer:" | |
| def get_step_footnote_content(step_log: ActionStep | PlanningStep, step_name: str) -> str: | |
| """Get a footnote string for a step log with duration and token information""" | |
| step_footnote = f"**{step_name}**" | |
| if step_log.token_usage is not None: | |
| step_footnote += f" | Input tokens: {step_log.token_usage.input_tokens:,} | Output tokens: {step_log.token_usage.output_tokens:,}" | |
| step_footnote += f" | Duration: {round(float(step_log.timing.duration), 2)}s" if step_log.timing.duration else "" | |
| step_footnote_content = f"""<span style="color: #bbbbc2; font-size: 12px;">{step_footnote}</span> """ | |
| return step_footnote_content | |
| def _clean_model_output(model_output: str) -> str: | |
| """ | |
| Clean up model output by removing trailing tags and extra backticks. | |
| Args: | |
| model_output (`str`): Raw model output. | |
| Returns: | |
| `str`: Cleaned model output. | |
| """ | |
| if not model_output: | |
| return "" | |
| model_output = model_output.strip() | |
| # Remove any trailing <end_code> and extra backticks, handling multiple possible formats | |
| model_output = re.sub(r"```\s*<end_code>", "```", model_output) # handles ```<end_code> | |
| model_output = re.sub(r"<end_code>\s*```", "```", model_output) # handles <end_code>``` | |
| model_output = re.sub(r"```\s*\n\s*<end_code>", "```", model_output) # handles ```\n<end_code> | |
| return model_output.strip() | |
| def _format_code_content(content: str) -> str: | |
| """ | |
| Format code content as Python code block if it's not already formatted. | |
| Args: | |
| content (`str`): Code content to format. | |
| Returns: | |
| `str`: Code content formatted as a Python code block. | |
| """ | |
| content = content.strip() | |
| # Remove existing code blocks and end_code tags | |
| content = re.sub(r"```.*?\n", "", content) | |
| content = re.sub(r"\s*<end_code>\s*", "", content) | |
| content = content.strip() | |
| # Add Python code block formatting if not already present | |
| if not content.startswith("```python"): | |
| content = f"```python\n{content}\n```" | |
| return content | |
| def _process_action_step(step_log: ActionStep, skip_model_outputs: bool = False) -> Generator: | |
| """ | |
| Process an [`ActionStep`] and yield appropriate Gradio ChatMessage objects. | |
| Args: | |
| step_log ([`ActionStep`]): ActionStep to process. | |
| skip_model_outputs (`bool`): Whether to skip model outputs. | |
| Yields: | |
| `gradio.ChatMessage`: Gradio ChatMessages representing the action step. | |
| """ | |
| import gradio as gr | |
| # Output the step number | |
| step_number = f"Step {step_log.step_number}" | |
| if not skip_model_outputs: | |
| yield gr.ChatMessage(role=MessageRole.ASSISTANT, content=f"**{step_number}**", metadata={"status": "done"}) | |
| # First yield the thought/reasoning from the LLM | |
| if not skip_model_outputs and getattr(step_log, "model_output", ""): | |
| model_output = _clean_model_output(step_log.model_output) | |
| yield gr.ChatMessage(role=MessageRole.ASSISTANT, content=model_output, metadata={"status": "done"}) | |
| # For tool calls, create a parent message | |
| if getattr(step_log, "tool_calls", []): | |
| first_tool_call = step_log.tool_calls[0] | |
| used_code = first_tool_call.name == "python_interpreter" | |
| # Process arguments based on type | |
| args = first_tool_call.arguments | |
| if isinstance(args, dict): | |
| content = str(args.get("answer", str(args))) | |
| else: | |
| content = str(args).strip() | |
| # Format code content if needed | |
| if used_code: | |
| content = _format_code_content(content) | |
| # Create the tool call message | |
| parent_message_tool = gr.ChatMessage( | |
| role=MessageRole.ASSISTANT, | |
| content=content, | |
| metadata={ | |
| "title": f"🛠️ Used tool {first_tool_call.name}", | |
| "status": "done", | |
| }, | |
| ) | |
| yield parent_message_tool | |
| # Display execution logs if they exist | |
| if getattr(step_log, "observations", "") and step_log.observations.strip(): | |
| log_content = step_log.observations.strip() | |
| if log_content: | |
| log_content = re.sub(r"^Execution logs:\s*", "", log_content) | |
| yield gr.ChatMessage( | |
| role=MessageRole.ASSISTANT, | |
| content=f"```bash\n{log_content}\n", | |
| metadata={"title": "📝 Execution Logs", "status": "done"}, | |
| ) | |
| # Display any images in observations | |
| if getattr(step_log, "observations_images", []): | |
| for image in step_log.observations_images: | |
| path_image = AgentImage(image).to_string() | |
| yield gr.ChatMessage( | |
| role=MessageRole.ASSISTANT, | |
| content={"path": path_image, "mime_type": f"image/{path_image.split('.')[-1]}"}, | |
| metadata={"title": "🖼️ Output Image", "status": "done"}, | |
| ) | |
| # Handle errors | |
| if getattr(step_log, "error", None): | |
| yield gr.ChatMessage( | |
| role=MessageRole.ASSISTANT, content=str(step_log.error), metadata={"title": "💥 Error", "status": "done"} | |
| ) | |
| # Add step footnote and separator | |
| yield gr.ChatMessage( | |
| role=MessageRole.ASSISTANT, | |
| content=get_step_footnote_content(step_log, step_number), | |
| metadata={"status": "done"}, | |
| ) | |
| yield gr.ChatMessage(role=MessageRole.ASSISTANT, content="-----", metadata={"status": "done"}) | |
| def _process_planning_step(step_log: PlanningStep, skip_model_outputs: bool = False) -> Generator: | |
| """ | |
| Process a [`PlanningStep`] and yield appropriate gradio.ChatMessage objects. | |
| Args: | |
| step_log ([`PlanningStep`]): PlanningStep to process. | |
| Yields: | |
| `gradio.ChatMessage`: Gradio ChatMessages representing the planning step. | |
| """ | |
| import gradio as gr | |
| if not skip_model_outputs: | |
| yield gr.ChatMessage(role=MessageRole.ASSISTANT, content="**Planning step**", metadata={"status": "done"}) | |
| yield gr.ChatMessage(role=MessageRole.ASSISTANT, content=step_log.plan, metadata={"status": "done"}) | |
| yield gr.ChatMessage( | |
| role=MessageRole.ASSISTANT, | |
| content=get_step_footnote_content(step_log, "Planning step"), | |
| metadata={"status": "done"}, | |
| ) | |
| yield gr.ChatMessage(role=MessageRole.ASSISTANT, content="-----", metadata={"status": "done"}) | |
| def _process_final_answer_step(step_log: FinalAnswerStep) -> Generator: | |
| """ | |
| Process a [`FinalAnswerStep`] and yield appropriate gradio.ChatMessage objects. | |
| Args: | |
| step_log ([`FinalAnswerStep`]): FinalAnswerStep to process. | |
| Yields: | |
| `gradio.ChatMessage`: Gradio ChatMessages representing the final answer. | |
| """ | |
| import gradio as gr | |
| final_answer = step_log.output | |
| if isinstance(final_answer, AgentText): | |
| yield gr.ChatMessage( | |
| role=MessageRole.ASSISTANT, | |
| content=f"**{FINAL_ANSWER_TAG}**\n{final_answer.to_string()}\n", | |
| metadata={"status": "done"}, | |
| ) | |
| elif isinstance(final_answer, AgentImage): | |
| yield gr.ChatMessage( | |
| role=MessageRole.ASSISTANT, | |
| content={"path": final_answer.to_string(), "mime_type": "image/png"}, | |
| metadata={"status": "done"}, | |
| ) | |
| elif isinstance(final_answer, AgentAudio): | |
| yield gr.ChatMessage( | |
| role=MessageRole.ASSISTANT, | |
| content={"path": final_answer.to_string(), "mime_type": "audio/wav"}, | |
| metadata={"status": "done"}, | |
| ) | |
| else: | |
| yield gr.ChatMessage( | |
| role=MessageRole.ASSISTANT, content=f"**{FINAL_ANSWER_TAG}** {str(final_answer)}", metadata={"status": "done"} | |
| ) | |
| def pull_messages_from_step(step_log: ActionStep | PlanningStep | FinalAnswerStep, skip_model_outputs: bool = False): | |
| """Extract Gradio ChatMessage objects from agent steps with proper nesting. | |
| Args: | |
| step_log: The step log to display as gr.ChatMessage objects. | |
| skip_model_outputs: If True, skip the model outputs when creating the gr.ChatMessage objects: | |
| This is used for instance when streaming model outputs have already been displayed. | |
| """ | |
| if isinstance(step_log, ActionStep): | |
| yield from _process_action_step(step_log, skip_model_outputs) | |
| elif isinstance(step_log, PlanningStep): | |
| yield from _process_planning_step(step_log, skip_model_outputs) | |
| elif isinstance(step_log, FinalAnswerStep): | |
| yield from _process_final_answer_step(step_log) | |
| else: | |
| raise ValueError(f"Unsupported step type: {type(step_log)}") | |
| def stream_to_gradio( | |
| agent, | |
| task: str, | |
| additional_args: dict | None = None, | |
| ) -> Generator: | |
| """Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages.""" | |
| accumulated_events: list[ChatMessageStreamDelta] = [] | |
| for event in agent.run(task, additional_args=additional_args): | |
| if isinstance(event, ActionStep | PlanningStep | FinalAnswerStep): | |
| for message in pull_messages_from_step( | |
| event, | |
| # If we're streaming model outputs, no need to display them twice | |
| skip_model_outputs=getattr(agent, "stream_outputs", False), | |
| ): | |
| yield message | |
| accumulated_events = [] | |
| elif isinstance(event, ChatMessageStreamDelta): | |
| accumulated_events.append(event) | |
| text = agglomerate_stream_deltas(accumulated_events).render_as_markdown() | |
| yield text | |
| class AgentUI: | |
| """ | |
| Gradio interface for interacting with a [`MultiStepAgent`]. | |
| This class provides a web interface to interact with the agent in real-time, allowing users to submit prompts, and receive responses in a chat-like format. | |
| It can reset the agent's memory at the start of each interaction if desired. | |
| It uses the [`gradio.Chatbot`] component to display the conversation history. | |
| This class requires the `gradio` extra to be installed: `pip install 'smolagents[gradio]'`. | |
| Args: | |
| agent ([`MultiStepAgent`]): The agent to interact with. | |
| """ | |
| def __init__(self, agent: MultiStepAgent): | |
| self.agent = agent | |
| self.description = getattr(agent, "description", None) | |
| def set_advanced_mode(self, enabled: bool): | |
| """ | |
| Configure the agent to enable/disable advanced mode. | |
| """ | |
| self.agent.enable_advanced_mode(enabled) | |
| def interact_with_agent(self, prompt: str, verbose_messages: list, quiet_messages: list): | |
| """ | |
| Interacts with the agent and streams results into two separate histories: | |
| - verbose_messages: full reasoning stream (Chatterbox) | |
| - quiet_messages: only user prompt + final answer (Quiet) | |
| Quiet is enhanced with pending "Step N..." indicators only (no generic thinking text). | |
| """ | |
| import gradio as gr | |
| try: | |
| # Append the user message to both histories (quiet keeps the user query) | |
| user_msg = gr.ChatMessage(role="user", content=prompt, metadata={"status": "done"}) | |
| verbose_messages.append(user_msg) | |
| quiet_messages.append(user_msg) | |
| # yield initial state to update UI immediately | |
| yield verbose_messages, quiet_messages | |
| quiet_pending_idx = None | |
| for msg in stream_to_gradio(self.agent, task=prompt): | |
| # Full gr.ChatMessage object (from steps) — append to verbose always | |
| if isinstance(msg, gr.ChatMessage): | |
| # Mark last verbose pending -> done if needed and append | |
| if verbose_messages and verbose_messages[-1].metadata.get("status") == "pending": | |
| verbose_messages[-1].metadata["status"] = "done" | |
| verbose_messages[-1].content = msg.content | |
| else: | |
| verbose_messages.append(msg) | |
| content_text = msg.content if isinstance(msg.content, str) else "" | |
| # Detect final answer messages and append to quiet | |
| # HACK : FinalAnswerStep messages are produced by _process_final_answer_step and use FINAL_ANSWER_TAG | |
| if FINAL_ANSWER_TAG in content_text: | |
| # Remove everything before and including the FINAL_ANSWER_TAG label (and any leading/trailing whitespace/newlines) | |
| answer_only = re.sub( | |
| rf"(?s)^.*?\*\*{FINAL_ANSWER_TAG}\*\*\s*[\n]*", # (?s) allows . to match newlines | |
| "", | |
| content_text, | |
| flags=re.IGNORECASE, | |
| ) | |
| final_msg = gr.ChatMessage(role=MessageRole.ASSISTANT, content=answer_only, metadata={"status": "done"}) | |
| if quiet_pending_idx is not None: | |
| quiet_messages[quiet_pending_idx] = final_msg | |
| quiet_pending_idx = None | |
| else: | |
| quiet_messages.append(final_msg) | |
| else: | |
| # Look for "Step <number>" pattern | |
| match = re.search(r"\bStep\s*(\d+)\b", content_text, re.IGNORECASE) | |
| if match: | |
| step_num = match.group(1) | |
| pending_text = f"⏳ Step {step_num}..." | |
| if quiet_pending_idx is None: | |
| quiet_messages.append( | |
| gr.ChatMessage( | |
| role=MessageRole.ASSISTANT, | |
| content=pending_text, | |
| metadata={"status": "pending"}, | |
| ) | |
| ) | |
| quiet_pending_idx = len(quiet_messages) - 1 | |
| else: | |
| quiet_messages[quiet_pending_idx].content = pending_text | |
| elif isinstance(msg, str): | |
| text = msg.replace("<", r"\<").replace(">", r"\>") | |
| if verbose_messages and verbose_messages[-1].metadata.get("status") == "pending": | |
| verbose_messages[-1].content = text | |
| else: | |
| verbose_messages.append( | |
| gr.ChatMessage(role=MessageRole.ASSISTANT, content=text, metadata={"status": "pending"}) | |
| ) | |
| yield verbose_messages, quiet_messages | |
| # final yield to ensure both UIs are up-to-date | |
| yield verbose_messages, quiet_messages | |
| except Exception as e: | |
| # ensure UIs don't hang if something failed | |
| yield verbose_messages, quiet_messages | |
| raise gr.Error(f"Error in interaction: {str(e)}") | |
| def clear_history(self): | |
| """ | |
| Clear the chat history and reset the agent's memory. | |
| """ | |
| self.agent.reset() | |
| return [], [] | |
| def disable_query(self, text_input): | |
| """ | |
| Disable the text input and submit button while the agent is processing. | |
| """ | |
| import gradio as gr | |
| return ( | |
| text_input, | |
| gr.Textbox( | |
| value="", | |
| placeholder="Wait for answer completion before submitting a new prompt...", | |
| interactive=False | |
| ), | |
| gr.Button(interactive=False), | |
| ) | |
| def enable_query(self): | |
| """ | |
| Enable the text input and submit button after the agent has finished processing. | |
| """ | |
| import gradio as gr | |
| return ( | |
| gr.Textbox( | |
| interactive=True, | |
| placeholder="Enter your prompt here and press Shift+Enter or the button" | |
| ), | |
| gr.Button(interactive=True), | |
| ) | |
| def launch(self, share: bool = True, **kwargs): | |
| """ | |
| Launch the Gradio app with the agent interface. | |
| Args: | |
| share (`bool`, defaults to `True`): Whether to share the app publicly. | |
| **kwargs: Additional keyword arguments to pass to the Gradio launch method. | |
| """ | |
| self.create_app().launch(debug=True, share=share, **kwargs) | |
| def get_tavily_credits(self): | |
| """ | |
| Fetch the Tavily credits. | |
| """ | |
| return self.agent.get_search_credits() | |
| def get_advanced_mode(self) -> bool: | |
| """ | |
| Return the agent's current advanced_mode flag for initializing the checkbox on page load. | |
| """ | |
| return getattr(self.agent, "advanced_mode", False) | |
| def create_app(self): | |
| import gradio as gr | |
| # some nice thmes available here: https://huggingface.co/spaces/gradio/theme-gallery | |
| with gr.Blocks(theme="JohnSmith9982/small_and_pretty", fill_height=True) as agent: | |
| # Set up states to hold the session information | |
| stored_query = gr.State("") # current user query | |
| stored_messages_verbose = gr.State([]) # full reasoning history | |
| stored_messages_quiet = gr.State([]) # only user + final answer | |
| with gr.Sidebar(): | |
| gr.Markdown( | |
| "# SmolAlbert 🤖" | |
| ) | |
| with gr.Group(): | |
| gr.Markdown("**Your request**", container=True) | |
| text_input = gr.Textbox( | |
| lines=3, | |
| label="Chat Message", | |
| container=False, | |
| placeholder="Enter your prompt here and press Shift+Enter or press the button", | |
| ) | |
| submit_btn = gr.Button("Submit", variant="primary") | |
| # Advanced search mode checkbox | |
| advanced_checkbox = gr.Checkbox( | |
| label="Advanced search mode", | |
| value=getattr(self.agent, "advanced_mode", False), | |
| info="Toggle advanced search behavior for the agent (x2 search credits).", | |
| container=True, | |
| ) | |
| # call agent configuration when checkbox changes | |
| advanced_checkbox.change(self.set_advanced_mode, advanced_checkbox, None) | |
| # ensure the checkbox reflects the current agent state each time a page/session loads | |
| agent.load(self.get_advanced_mode, None, advanced_checkbox) | |
| tavily_credits = gr.Textbox( | |
| label="Tavily Credits", | |
| value=self.get_tavily_credits(), | |
| interactive=False, | |
| container=True, | |
| ) | |
| gr.HTML( | |
| "<br><br><h4><center>Powered by <a target='_blank' href='https://github.com/huggingface/smolagents'><b>smolagents</b></a></center></h4>" | |
| ) | |
| with gr.Tab("Quiet", scale=1): | |
| quiet_chatbot = gr.Chatbot( | |
| label="Agent", | |
| type="messages", | |
| avatar_images=( | |
| None, | |
| "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/smolagents/mascot_smol.png", | |
| ), | |
| resizeable=True, | |
| scale=1, | |
| latex_delimiters=[ | |
| {"left": r"$$", "right": r"$$", "display": True}, | |
| {"left": r"$", "right": r"$", "display": False}, | |
| {"left": r"\[", "right": r"\]", "display": True}, | |
| {"left": r"\(", "right": r"\)", "display": False}, | |
| ], | |
| ) | |
| with gr.Tab("Chatterbox", scale=1): | |
| verbose_chatbot = gr.Chatbot( | |
| label="Agent", | |
| type="messages", | |
| avatar_images=( | |
| None, | |
| "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/smolagents/mascot_smol.png", | |
| ), | |
| resizeable=True, | |
| scale=1, | |
| latex_delimiters=[ | |
| {"left": r"$$", "right": r"$$", "display": True}, | |
| {"left": r"$", "right": r"$", "display": False}, | |
| {"left": r"\[", "right": r"\]", "display": True}, | |
| {"left": r"\(", "right": r"\)", "display": False}, | |
| ], | |
| ) | |
| # Main input handlers: call interact_with_agent(prompt, verbose_state, quiet_state) | |
| text_input.submit( | |
| self.disable_query, | |
| text_input, | |
| [stored_query, text_input, submit_btn] | |
| ).then( | |
| self.interact_with_agent, | |
| [stored_query, stored_messages_verbose, stored_messages_quiet], | |
| [verbose_chatbot, quiet_chatbot], | |
| ).then( | |
| self.get_tavily_credits, | |
| None, | |
| tavily_credits, | |
| ).then( | |
| self.enable_query, | |
| None, | |
| [text_input, submit_btn], | |
| ) | |
| submit_btn.click( | |
| self.disable_query, | |
| text_input, | |
| [stored_query, text_input, submit_btn] | |
| ).then( | |
| self.interact_with_agent, | |
| [stored_query, stored_messages_verbose, stored_messages_quiet], | |
| [verbose_chatbot, quiet_chatbot], | |
| ).then( | |
| self.get_tavily_credits, | |
| None, | |
| tavily_credits, | |
| ).then( | |
| self.enable_query, | |
| None, | |
| [text_input, submit_btn], | |
| ) | |
| # bind clears to both chat components so agent memory is reset | |
| quiet_chatbot.clear(self.clear_history, inputs=None, outputs=[stored_messages_verbose, stored_messages_quiet]) | |
| verbose_chatbot.clear(self.clear_history, inputs=None, outputs=[stored_messages_verbose, stored_messages_quiet]) | |
| return agent | |