Spaces:
Sleeping
Sleeping
File size: 24,326 Bytes
7224e82 16f8a25 7224e82 16f8a25 7224e82 16f8a25 7224e82 11c0a44 7224e82 16f8a25 b51b727 16f8a25 b51b727 7224e82 16f8a25 11c0a44 7224e82 16f8a25 7224e82 11c0a44 16f8a25 7224e82 16f8a25 7224e82 16f8a25 7224e82 16f8a25 7224e82 16f8a25 7224e82 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 |
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# The MIT License
# Copyright (c) 2025 Albert Murienne
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
import re
from typing import Generator
from smolagents.agent_types import AgentAudio, AgentImage, AgentText
from smolagents.agents import MultiStepAgent, PlanningStep
from smolagents.memory import ActionStep, FinalAnswerStep
from smolagents.models import ChatMessageStreamDelta, MessageRole, agglomerate_stream_deltas
FINAL_ANSWER_TAG = "Final answer:"
def get_step_footnote_content(step_log: ActionStep | PlanningStep, step_name: str) -> str:
"""Get a footnote string for a step log with duration and token information"""
step_footnote = f"**{step_name}**"
if step_log.token_usage is not None:
step_footnote += f" | Input tokens: {step_log.token_usage.input_tokens:,} | Output tokens: {step_log.token_usage.output_tokens:,}"
step_footnote += f" | Duration: {round(float(step_log.timing.duration), 2)}s" if step_log.timing.duration else ""
step_footnote_content = f"""<span style="color: #bbbbc2; font-size: 12px;">{step_footnote}</span> """
return step_footnote_content
def _clean_model_output(model_output: str) -> str:
"""
Clean up model output by removing trailing tags and extra backticks.
Args:
model_output (`str`): Raw model output.
Returns:
`str`: Cleaned model output.
"""
if not model_output:
return ""
model_output = model_output.strip()
# Remove any trailing <end_code> and extra backticks, handling multiple possible formats
model_output = re.sub(r"```\s*<end_code>", "```", model_output) # handles ```<end_code>
model_output = re.sub(r"<end_code>\s*```", "```", model_output) # handles <end_code>```
model_output = re.sub(r"```\s*\n\s*<end_code>", "```", model_output) # handles ```\n<end_code>
return model_output.strip()
def _format_code_content(content: str) -> str:
"""
Format code content as Python code block if it's not already formatted.
Args:
content (`str`): Code content to format.
Returns:
`str`: Code content formatted as a Python code block.
"""
content = content.strip()
# Remove existing code blocks and end_code tags
content = re.sub(r"```.*?\n", "", content)
content = re.sub(r"\s*<end_code>\s*", "", content)
content = content.strip()
# Add Python code block formatting if not already present
if not content.startswith("```python"):
content = f"```python\n{content}\n```"
return content
def _process_action_step(step_log: ActionStep, skip_model_outputs: bool = False) -> Generator:
"""
Process an [`ActionStep`] and yield appropriate Gradio ChatMessage objects.
Args:
step_log ([`ActionStep`]): ActionStep to process.
skip_model_outputs (`bool`): Whether to skip model outputs.
Yields:
`gradio.ChatMessage`: Gradio ChatMessages representing the action step.
"""
import gradio as gr
# Output the step number
step_number = f"Step {step_log.step_number}"
if not skip_model_outputs:
yield gr.ChatMessage(role=MessageRole.ASSISTANT, content=f"**{step_number}**", metadata={"status": "done"})
# First yield the thought/reasoning from the LLM
if not skip_model_outputs and getattr(step_log, "model_output", ""):
model_output = _clean_model_output(step_log.model_output)
yield gr.ChatMessage(role=MessageRole.ASSISTANT, content=model_output, metadata={"status": "done"})
# For tool calls, create a parent message
if getattr(step_log, "tool_calls", []):
first_tool_call = step_log.tool_calls[0]
used_code = first_tool_call.name == "python_interpreter"
# Process arguments based on type
args = first_tool_call.arguments
if isinstance(args, dict):
content = str(args.get("answer", str(args)))
else:
content = str(args).strip()
# Format code content if needed
if used_code:
content = _format_code_content(content)
# Create the tool call message
parent_message_tool = gr.ChatMessage(
role=MessageRole.ASSISTANT,
content=content,
metadata={
"title": f"π οΈ Used tool {first_tool_call.name}",
"status": "done",
},
)
yield parent_message_tool
# Display execution logs if they exist
if getattr(step_log, "observations", "") and step_log.observations.strip():
log_content = step_log.observations.strip()
if log_content:
log_content = re.sub(r"^Execution logs:\s*", "", log_content)
yield gr.ChatMessage(
role=MessageRole.ASSISTANT,
content=f"```bash\n{log_content}\n",
metadata={"title": "π Execution Logs", "status": "done"},
)
# Display any images in observations
if getattr(step_log, "observations_images", []):
for image in step_log.observations_images:
path_image = AgentImage(image).to_string()
yield gr.ChatMessage(
role=MessageRole.ASSISTANT,
content={"path": path_image, "mime_type": f"image/{path_image.split('.')[-1]}"},
metadata={"title": "πΌοΈ Output Image", "status": "done"},
)
# Handle errors
if getattr(step_log, "error", None):
yield gr.ChatMessage(
role=MessageRole.ASSISTANT, content=str(step_log.error), metadata={"title": "π₯ Error", "status": "done"}
)
# Add step footnote and separator
yield gr.ChatMessage(
role=MessageRole.ASSISTANT,
content=get_step_footnote_content(step_log, step_number),
metadata={"status": "done"},
)
yield gr.ChatMessage(role=MessageRole.ASSISTANT, content="-----", metadata={"status": "done"})
def _process_planning_step(step_log: PlanningStep, skip_model_outputs: bool = False) -> Generator:
"""
Process a [`PlanningStep`] and yield appropriate gradio.ChatMessage objects.
Args:
step_log ([`PlanningStep`]): PlanningStep to process.
Yields:
`gradio.ChatMessage`: Gradio ChatMessages representing the planning step.
"""
import gradio as gr
if not skip_model_outputs:
yield gr.ChatMessage(role=MessageRole.ASSISTANT, content="**Planning step**", metadata={"status": "done"})
yield gr.ChatMessage(role=MessageRole.ASSISTANT, content=step_log.plan, metadata={"status": "done"})
yield gr.ChatMessage(
role=MessageRole.ASSISTANT,
content=get_step_footnote_content(step_log, "Planning step"),
metadata={"status": "done"},
)
yield gr.ChatMessage(role=MessageRole.ASSISTANT, content="-----", metadata={"status": "done"})
def _process_final_answer_step(step_log: FinalAnswerStep) -> Generator:
"""
Process a [`FinalAnswerStep`] and yield appropriate gradio.ChatMessage objects.
Args:
step_log ([`FinalAnswerStep`]): FinalAnswerStep to process.
Yields:
`gradio.ChatMessage`: Gradio ChatMessages representing the final answer.
"""
import gradio as gr
final_answer = step_log.output
if isinstance(final_answer, AgentText):
yield gr.ChatMessage(
role=MessageRole.ASSISTANT,
content=f"**{FINAL_ANSWER_TAG}**\n{final_answer.to_string()}\n",
metadata={"status": "done"},
)
elif isinstance(final_answer, AgentImage):
yield gr.ChatMessage(
role=MessageRole.ASSISTANT,
content={"path": final_answer.to_string(), "mime_type": "image/png"},
metadata={"status": "done"},
)
elif isinstance(final_answer, AgentAudio):
yield gr.ChatMessage(
role=MessageRole.ASSISTANT,
content={"path": final_answer.to_string(), "mime_type": "audio/wav"},
metadata={"status": "done"},
)
else:
yield gr.ChatMessage(
role=MessageRole.ASSISTANT, content=f"**{FINAL_ANSWER_TAG}** {str(final_answer)}", metadata={"status": "done"}
)
def pull_messages_from_step(step_log: ActionStep | PlanningStep | FinalAnswerStep, skip_model_outputs: bool = False):
"""Extract Gradio ChatMessage objects from agent steps with proper nesting.
Args:
step_log: The step log to display as gr.ChatMessage objects.
skip_model_outputs: If True, skip the model outputs when creating the gr.ChatMessage objects:
This is used for instance when streaming model outputs have already been displayed.
"""
if isinstance(step_log, ActionStep):
yield from _process_action_step(step_log, skip_model_outputs)
elif isinstance(step_log, PlanningStep):
yield from _process_planning_step(step_log, skip_model_outputs)
elif isinstance(step_log, FinalAnswerStep):
yield from _process_final_answer_step(step_log)
else:
raise ValueError(f"Unsupported step type: {type(step_log)}")
def stream_to_gradio(
agent,
task: str,
additional_args: dict | None = None,
) -> Generator:
"""Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages."""
accumulated_events: list[ChatMessageStreamDelta] = []
for event in agent.run(task, additional_args=additional_args):
if isinstance(event, ActionStep | PlanningStep | FinalAnswerStep):
for message in pull_messages_from_step(
event,
# If we're streaming model outputs, no need to display them twice
skip_model_outputs=getattr(agent, "stream_outputs", False),
):
yield message
accumulated_events = []
elif isinstance(event, ChatMessageStreamDelta):
accumulated_events.append(event)
text = agglomerate_stream_deltas(accumulated_events).render_as_markdown()
yield text
class AgentUI:
"""
Gradio interface for interacting with a [`MultiStepAgent`].
This class provides a web interface to interact with the agent in real-time, allowing users to submit prompts, and receive responses in a chat-like format.
It can reset the agent's memory at the start of each interaction if desired.
It uses the [`gradio.Chatbot`] component to display the conversation history.
This class requires the `gradio` extra to be installed: `pip install 'smolagents[gradio]'`.
Args:
agent ([`MultiStepAgent`]): The agent to interact with.
"""
def __init__(self, agent: MultiStepAgent):
self.agent = agent
self.description = getattr(agent, "description", None)
def set_advanced_mode(self, enabled: bool):
"""
Configure the agent to enable/disable advanced mode.
"""
self.agent.enable_advanced_mode(enabled)
def interact_with_agent(self, prompt: str, verbose_messages: list, quiet_messages: list):
"""
Interacts with the agent and streams results into two separate histories:
- verbose_messages: full reasoning stream (Chatterbox)
- quiet_messages: only user prompt + final answer (Quiet)
Quiet is enhanced with pending "Step N..." indicators only (no generic thinking text).
"""
import gradio as gr
try:
# Append the user message to both histories (quiet keeps the user query)
user_msg = gr.ChatMessage(role="user", content=prompt, metadata={"status": "done"})
verbose_messages.append(user_msg)
quiet_messages.append(user_msg)
# yield initial state to update UI immediately
yield verbose_messages, quiet_messages
quiet_pending_idx = None
for msg in stream_to_gradio(self.agent, task=prompt):
# Full gr.ChatMessage object (from steps) β append to verbose always
if isinstance(msg, gr.ChatMessage):
# Mark last verbose pending -> done if needed and append
if verbose_messages and verbose_messages[-1].metadata.get("status") == "pending":
verbose_messages[-1].metadata["status"] = "done"
verbose_messages[-1].content = msg.content
else:
verbose_messages.append(msg)
content_text = msg.content if isinstance(msg.content, str) else ""
# Detect final answer messages and append to quiet
# HACK : FinalAnswerStep messages are produced by _process_final_answer_step and use FINAL_ANSWER_TAG
if FINAL_ANSWER_TAG in content_text:
# Remove everything before and including the FINAL_ANSWER_TAG label (and any leading/trailing whitespace/newlines)
answer_only = re.sub(
rf"(?s)^.*?\*\*{FINAL_ANSWER_TAG}\*\*\s*[\n]*", # (?s) allows . to match newlines
"",
content_text,
flags=re.IGNORECASE,
)
final_msg = gr.ChatMessage(role=MessageRole.ASSISTANT, content=answer_only, metadata={"status": "done"})
if quiet_pending_idx is not None:
quiet_messages[quiet_pending_idx] = final_msg
quiet_pending_idx = None
else:
quiet_messages.append(final_msg)
else:
# Look for "Step <number>" pattern
match = re.search(r"\bStep\s*(\d+)\b", content_text, re.IGNORECASE)
if match:
step_num = match.group(1)
pending_text = f"β³ Step {step_num}..."
if quiet_pending_idx is None:
quiet_messages.append(
gr.ChatMessage(
role=MessageRole.ASSISTANT,
content=pending_text,
metadata={"status": "pending"},
)
)
quiet_pending_idx = len(quiet_messages) - 1
else:
quiet_messages[quiet_pending_idx].content = pending_text
elif isinstance(msg, str):
text = msg.replace("<", r"\<").replace(">", r"\>")
if verbose_messages and verbose_messages[-1].metadata.get("status") == "pending":
verbose_messages[-1].content = text
else:
verbose_messages.append(
gr.ChatMessage(role=MessageRole.ASSISTANT, content=text, metadata={"status": "pending"})
)
yield verbose_messages, quiet_messages
# final yield to ensure both UIs are up-to-date
yield verbose_messages, quiet_messages
except Exception as e:
# ensure UIs don't hang if something failed
yield verbose_messages, quiet_messages
raise gr.Error(f"Error in interaction: {str(e)}")
def clear_history(self):
"""
Clear the chat history and reset the agent's memory.
"""
self.agent.reset()
return [], []
def disable_query(self, text_input):
"""
Disable the text input and submit button while the agent is processing.
"""
import gradio as gr
return (
text_input,
gr.Textbox(
value="",
placeholder="Wait for answer completion before submitting a new prompt...",
interactive=False
),
gr.Button(interactive=False),
)
def enable_query(self):
"""
Enable the text input and submit button after the agent has finished processing.
"""
import gradio as gr
return (
gr.Textbox(
interactive=True,
placeholder="Enter your prompt here and press Shift+Enter or the button"
),
gr.Button(interactive=True),
)
def launch(self, share: bool = True, **kwargs):
"""
Launch the Gradio app with the agent interface.
Args:
share (`bool`, defaults to `True`): Whether to share the app publicly.
**kwargs: Additional keyword arguments to pass to the Gradio launch method.
"""
self.create_app().launch(debug=True, share=share, **kwargs)
def get_tavily_credits(self):
"""
Fetch the Tavily credits.
"""
return self.agent.get_search_credits()
def get_advanced_mode(self) -> bool:
"""
Return the agent's current advanced_mode flag for initializing the checkbox on page load.
"""
return getattr(self.agent, "advanced_mode", False)
def create_app(self):
import gradio as gr
# some nice thmes available here: https://huggingface.co/spaces/gradio/theme-gallery
with gr.Blocks(theme="JohnSmith9982/small_and_pretty", fill_height=True) as agent:
# Set up states to hold the session information
stored_query = gr.State("") # current user query
stored_messages_verbose = gr.State([]) # full reasoning history
stored_messages_quiet = gr.State([]) # only user + final answer
with gr.Sidebar():
gr.Markdown(
"# SmolAlbert π€"
)
with gr.Group():
gr.Markdown("**Your request**", container=True)
text_input = gr.Textbox(
lines=3,
label="Chat Message",
container=False,
placeholder="Enter your prompt here and press Shift+Enter or press the button",
)
submit_btn = gr.Button("Submit", variant="primary")
# Advanced search mode checkbox
advanced_checkbox = gr.Checkbox(
label="Advanced search mode",
value=getattr(self.agent, "advanced_mode", False),
info="Toggle advanced search behavior for the agent (x2 search credits).",
container=True,
)
# call agent configuration when checkbox changes
advanced_checkbox.change(self.set_advanced_mode, advanced_checkbox, None)
# ensure the checkbox reflects the current agent state each time a page/session loads
agent.load(self.get_advanced_mode, None, advanced_checkbox)
tavily_credits = gr.Textbox(
label="Tavily Credits",
value=self.get_tavily_credits(),
interactive=False,
container=True,
)
gr.HTML(
"<br><br><h4><center>Powered by <a target='_blank' href='https://github.com/huggingface/smolagents'><b>smolagents</b></a></center></h4>"
)
with gr.Tab("Quiet", scale=1):
quiet_chatbot = gr.Chatbot(
label="Agent",
type="messages",
avatar_images=(
None,
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/smolagents/mascot_smol.png",
),
resizeable=True,
scale=1,
latex_delimiters=[
{"left": r"$$", "right": r"$$", "display": True},
{"left": r"$", "right": r"$", "display": False},
{"left": r"\[", "right": r"\]", "display": True},
{"left": r"\(", "right": r"\)", "display": False},
],
)
with gr.Tab("Chatterbox", scale=1):
verbose_chatbot = gr.Chatbot(
label="Agent",
type="messages",
avatar_images=(
None,
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/smolagents/mascot_smol.png",
),
resizeable=True,
scale=1,
latex_delimiters=[
{"left": r"$$", "right": r"$$", "display": True},
{"left": r"$", "right": r"$", "display": False},
{"left": r"\[", "right": r"\]", "display": True},
{"left": r"\(", "right": r"\)", "display": False},
],
)
# Main input handlers: call interact_with_agent(prompt, verbose_state, quiet_state)
text_input.submit(
self.disable_query,
text_input,
[stored_query, text_input, submit_btn]
).then(
self.interact_with_agent,
[stored_query, stored_messages_verbose, stored_messages_quiet],
[verbose_chatbot, quiet_chatbot],
).then(
self.get_tavily_credits,
None,
tavily_credits,
).then(
self.enable_query,
None,
[text_input, submit_btn],
)
submit_btn.click(
self.disable_query,
text_input,
[stored_query, text_input, submit_btn]
).then(
self.interact_with_agent,
[stored_query, stored_messages_verbose, stored_messages_quiet],
[verbose_chatbot, quiet_chatbot],
).then(
self.get_tavily_credits,
None,
tavily_credits,
).then(
self.enable_query,
None,
[text_input, submit_btn],
)
# bind clears to both chat components so agent memory is reset
quiet_chatbot.clear(self.clear_history, inputs=None, outputs=[stored_messages_verbose, stored_messages_quiet])
verbose_chatbot.clear(self.clear_history, inputs=None, outputs=[stored_messages_verbose, stored_messages_quiet])
return agent
|