File size: 24,326 Bytes
7224e82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16f8a25
 
7224e82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16f8a25
7224e82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16f8a25
7224e82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11c0a44
 
 
 
 
 
 
7224e82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16f8a25
 
 
b51b727
16f8a25
b51b727
 
 
 
 
7224e82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16f8a25
 
 
 
 
 
11c0a44
 
 
 
 
 
7224e82
 
 
16f8a25
 
7224e82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11c0a44
 
 
 
 
 
 
 
 
 
 
 
 
16f8a25
 
 
 
 
 
 
7224e82
 
 
 
 
16f8a25
7224e82
16f8a25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7224e82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16f8a25
 
 
 
7224e82
 
 
 
 
 
 
 
 
 
 
 
 
 
16f8a25
 
 
 
7224e82
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# The MIT License

# Copyright (c) 2025 Albert Murienne

# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.

import re
from typing import Generator

from smolagents.agent_types import AgentAudio, AgentImage, AgentText
from smolagents.agents import MultiStepAgent, PlanningStep
from smolagents.memory import ActionStep, FinalAnswerStep
from smolagents.models import ChatMessageStreamDelta, MessageRole, agglomerate_stream_deltas

FINAL_ANSWER_TAG = "Final answer:"

def get_step_footnote_content(step_log: ActionStep | PlanningStep, step_name: str) -> str:
    """Get a footnote string for a step log with duration and token information"""
    step_footnote = f"**{step_name}**"
    if step_log.token_usage is not None:
        step_footnote += f" | Input tokens: {step_log.token_usage.input_tokens:,} | Output tokens: {step_log.token_usage.output_tokens:,}"
    step_footnote += f" | Duration: {round(float(step_log.timing.duration), 2)}s" if step_log.timing.duration else ""
    step_footnote_content = f"""<span style="color: #bbbbc2; font-size: 12px;">{step_footnote}</span> """
    return step_footnote_content


def _clean_model_output(model_output: str) -> str:
    """
    Clean up model output by removing trailing tags and extra backticks.

    Args:
        model_output (`str`): Raw model output.

    Returns:
        `str`: Cleaned model output.
    """
    if not model_output:
        return ""
    model_output = model_output.strip()
    # Remove any trailing <end_code> and extra backticks, handling multiple possible formats
    model_output = re.sub(r"```\s*<end_code>", "```", model_output)  # handles ```<end_code>
    model_output = re.sub(r"<end_code>\s*```", "```", model_output)  # handles <end_code>```
    model_output = re.sub(r"```\s*\n\s*<end_code>", "```", model_output)  # handles ```\n<end_code>
    return model_output.strip()


def _format_code_content(content: str) -> str:
    """
    Format code content as Python code block if it's not already formatted.

    Args:
        content (`str`): Code content to format.

    Returns:
        `str`: Code content formatted as a Python code block.
    """
    content = content.strip()
    # Remove existing code blocks and end_code tags
    content = re.sub(r"```.*?\n", "", content)
    content = re.sub(r"\s*<end_code>\s*", "", content)
    content = content.strip()
    # Add Python code block formatting if not already present
    if not content.startswith("```python"):
        content = f"```python\n{content}\n```"
    return content


def _process_action_step(step_log: ActionStep, skip_model_outputs: bool = False) -> Generator:
    """
    Process an [`ActionStep`] and yield appropriate Gradio ChatMessage objects.

    Args:
        step_log ([`ActionStep`]): ActionStep to process.
        skip_model_outputs (`bool`): Whether to skip model outputs.

    Yields:
        `gradio.ChatMessage`: Gradio ChatMessages representing the action step.
    """
    import gradio as gr

    # Output the step number
    step_number = f"Step {step_log.step_number}"
    if not skip_model_outputs:
        yield gr.ChatMessage(role=MessageRole.ASSISTANT, content=f"**{step_number}**", metadata={"status": "done"})

    # First yield the thought/reasoning from the LLM
    if not skip_model_outputs and getattr(step_log, "model_output", ""):
        model_output = _clean_model_output(step_log.model_output)
        yield gr.ChatMessage(role=MessageRole.ASSISTANT, content=model_output, metadata={"status": "done"})

    # For tool calls, create a parent message
    if getattr(step_log, "tool_calls", []):
        first_tool_call = step_log.tool_calls[0]
        used_code = first_tool_call.name == "python_interpreter"

        # Process arguments based on type
        args = first_tool_call.arguments
        if isinstance(args, dict):
            content = str(args.get("answer", str(args)))
        else:
            content = str(args).strip()

        # Format code content if needed
        if used_code:
            content = _format_code_content(content)

        # Create the tool call message
        parent_message_tool = gr.ChatMessage(
            role=MessageRole.ASSISTANT,
            content=content,
            metadata={
                "title": f"πŸ› οΈ Used tool {first_tool_call.name}",
                "status": "done",
            },
        )
        yield parent_message_tool

    # Display execution logs if they exist
    if getattr(step_log, "observations", "") and step_log.observations.strip():
        log_content = step_log.observations.strip()
        if log_content:
            log_content = re.sub(r"^Execution logs:\s*", "", log_content)
            yield gr.ChatMessage(
                role=MessageRole.ASSISTANT,
                content=f"```bash\n{log_content}\n",
                metadata={"title": "πŸ“ Execution Logs", "status": "done"},
            )

    # Display any images in observations
    if getattr(step_log, "observations_images", []):
        for image in step_log.observations_images:
            path_image = AgentImage(image).to_string()
            yield gr.ChatMessage(
                role=MessageRole.ASSISTANT,
                content={"path": path_image, "mime_type": f"image/{path_image.split('.')[-1]}"},
                metadata={"title": "πŸ–ΌοΈ Output Image", "status": "done"},
            )

    # Handle errors
    if getattr(step_log, "error", None):
        yield gr.ChatMessage(
            role=MessageRole.ASSISTANT, content=str(step_log.error), metadata={"title": "πŸ’₯ Error", "status": "done"}
        )

    # Add step footnote and separator
    yield gr.ChatMessage(
        role=MessageRole.ASSISTANT,
        content=get_step_footnote_content(step_log, step_number),
        metadata={"status": "done"},
    )
    yield gr.ChatMessage(role=MessageRole.ASSISTANT, content="-----", metadata={"status": "done"})


def _process_planning_step(step_log: PlanningStep, skip_model_outputs: bool = False) -> Generator:
    """
    Process a [`PlanningStep`] and yield appropriate gradio.ChatMessage objects.

    Args:
        step_log ([`PlanningStep`]): PlanningStep to process.

    Yields:
        `gradio.ChatMessage`: Gradio ChatMessages representing the planning step.
    """
    import gradio as gr

    if not skip_model_outputs:
        yield gr.ChatMessage(role=MessageRole.ASSISTANT, content="**Planning step**", metadata={"status": "done"})
        yield gr.ChatMessage(role=MessageRole.ASSISTANT, content=step_log.plan, metadata={"status": "done"})
    yield gr.ChatMessage(
        role=MessageRole.ASSISTANT,
        content=get_step_footnote_content(step_log, "Planning step"),
        metadata={"status": "done"},
    )
    yield gr.ChatMessage(role=MessageRole.ASSISTANT, content="-----", metadata={"status": "done"})


def _process_final_answer_step(step_log: FinalAnswerStep) -> Generator:
    """
    Process a [`FinalAnswerStep`] and yield appropriate gradio.ChatMessage objects.

    Args:
        step_log ([`FinalAnswerStep`]): FinalAnswerStep to process.

    Yields:
        `gradio.ChatMessage`: Gradio ChatMessages representing the final answer.
    """
    import gradio as gr

    final_answer = step_log.output
    if isinstance(final_answer, AgentText):
        yield gr.ChatMessage(
            role=MessageRole.ASSISTANT,
            content=f"**{FINAL_ANSWER_TAG}**\n{final_answer.to_string()}\n",
            metadata={"status": "done"},
        )
    elif isinstance(final_answer, AgentImage):
        yield gr.ChatMessage(
            role=MessageRole.ASSISTANT,
            content={"path": final_answer.to_string(), "mime_type": "image/png"},
            metadata={"status": "done"},
        )
    elif isinstance(final_answer, AgentAudio):
        yield gr.ChatMessage(
            role=MessageRole.ASSISTANT,
            content={"path": final_answer.to_string(), "mime_type": "audio/wav"},
            metadata={"status": "done"},
        )
    else:
        yield gr.ChatMessage(
            role=MessageRole.ASSISTANT, content=f"**{FINAL_ANSWER_TAG}** {str(final_answer)}", metadata={"status": "done"}
        )


def pull_messages_from_step(step_log: ActionStep | PlanningStep | FinalAnswerStep, skip_model_outputs: bool = False):
    """Extract Gradio ChatMessage objects from agent steps with proper nesting.

    Args:
        step_log: The step log to display as gr.ChatMessage objects.
        skip_model_outputs: If True, skip the model outputs when creating the gr.ChatMessage objects:
            This is used for instance when streaming model outputs have already been displayed.
    """
    if isinstance(step_log, ActionStep):
        yield from _process_action_step(step_log, skip_model_outputs)
    elif isinstance(step_log, PlanningStep):
        yield from _process_planning_step(step_log, skip_model_outputs)
    elif isinstance(step_log, FinalAnswerStep):
        yield from _process_final_answer_step(step_log)
    else:
        raise ValueError(f"Unsupported step type: {type(step_log)}")


def stream_to_gradio(
    agent,
    task: str,
    additional_args: dict | None = None,
) -> Generator:
    """Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages."""

    accumulated_events: list[ChatMessageStreamDelta] = []
    for event in agent.run(task, additional_args=additional_args):
        if isinstance(event, ActionStep | PlanningStep | FinalAnswerStep):
            for message in pull_messages_from_step(
                event,
                # If we're streaming model outputs, no need to display them twice
                skip_model_outputs=getattr(agent, "stream_outputs", False),
            ):
                yield message
            accumulated_events = []
        elif isinstance(event, ChatMessageStreamDelta):
            accumulated_events.append(event)
            text = agglomerate_stream_deltas(accumulated_events).render_as_markdown()
            yield text


class AgentUI:
    """
    Gradio interface for interacting with a [`MultiStepAgent`].

    This class provides a web interface to interact with the agent in real-time, allowing users to submit prompts, and receive responses in a chat-like format.
    It  can reset the agent's memory at the start of each interaction if desired.
    It uses the [`gradio.Chatbot`] component to display the conversation history.
    This class requires the `gradio` extra to be installed: `pip install 'smolagents[gradio]'`.

    Args:
        agent ([`MultiStepAgent`]): The agent to interact with.
    """

    def __init__(self, agent: MultiStepAgent):
        self.agent = agent
        self.description = getattr(agent, "description", None)

    def set_advanced_mode(self, enabled: bool):
        """
        Configure the agent to enable/disable advanced mode.
        """
        self.agent.enable_advanced_mode(enabled)

    def interact_with_agent(self, prompt: str, verbose_messages: list, quiet_messages: list):
        """
        Interacts with the agent and streams results into two separate histories:
            - verbose_messages: full reasoning stream (Chatterbox)
            - quiet_messages: only user prompt + final answer (Quiet)
        Quiet is enhanced with pending "Step N..." indicators only (no generic thinking text).
        """
        import gradio as gr

        try:
            # Append the user message to both histories (quiet keeps the user query)
            user_msg = gr.ChatMessage(role="user", content=prompt, metadata={"status": "done"})
            verbose_messages.append(user_msg)
            quiet_messages.append(user_msg)

            # yield initial state to update UI immediately
            yield verbose_messages, quiet_messages

            quiet_pending_idx = None

            for msg in stream_to_gradio(self.agent, task=prompt):

                # Full gr.ChatMessage object (from steps) β€” append to verbose always
                if isinstance(msg, gr.ChatMessage):
                    # Mark last verbose pending -> done if needed and append
                    if verbose_messages and verbose_messages[-1].metadata.get("status") == "pending":
                        verbose_messages[-1].metadata["status"] = "done"
                        verbose_messages[-1].content = msg.content
                    else:
                        verbose_messages.append(msg)

                    content_text = msg.content if isinstance(msg.content, str) else ""

                    # Detect final answer messages and append to quiet
                    # HACK : FinalAnswerStep messages are produced by _process_final_answer_step and use FINAL_ANSWER_TAG
                    if FINAL_ANSWER_TAG in content_text:
                        # Remove everything before and including the FINAL_ANSWER_TAG label (and any leading/trailing whitespace/newlines)
                        answer_only = re.sub(
                            rf"(?s)^.*?\*\*{FINAL_ANSWER_TAG}\*\*\s*[\n]*",  # (?s) allows . to match newlines
                            "",
                            content_text,
                            flags=re.IGNORECASE,
                        )
                        final_msg = gr.ChatMessage(role=MessageRole.ASSISTANT, content=answer_only, metadata={"status": "done"})
                        if quiet_pending_idx is not None:
                            quiet_messages[quiet_pending_idx] = final_msg
                            quiet_pending_idx = None
                        else:
                            quiet_messages.append(final_msg)
                    else:
                        # Look for "Step <number>" pattern
                        match = re.search(r"\bStep\s*(\d+)\b", content_text, re.IGNORECASE)
                        if match:
                            step_num = match.group(1)
                            pending_text = f"⏳ Step {step_num}..."
                            if quiet_pending_idx is None:
                                quiet_messages.append(
                                    gr.ChatMessage(
                                        role=MessageRole.ASSISTANT,
                                        content=pending_text,
                                        metadata={"status": "pending"},
                                    )
                                )
                                quiet_pending_idx = len(quiet_messages) - 1
                            else:
                                quiet_messages[quiet_pending_idx].content = pending_text

                elif isinstance(msg, str):
                    text = msg.replace("<", r"\<").replace(">", r"\>")
                    if verbose_messages and verbose_messages[-1].metadata.get("status") == "pending":
                        verbose_messages[-1].content = text
                    else:
                        verbose_messages.append(
                            gr.ChatMessage(role=MessageRole.ASSISTANT, content=text, metadata={"status": "pending"})
                        )
                    yield verbose_messages, quiet_messages

            # final yield to ensure both UIs are up-to-date
            yield verbose_messages, quiet_messages

        except Exception as e:
            # ensure UIs don't hang if something failed
            yield verbose_messages, quiet_messages
            raise gr.Error(f"Error in interaction: {str(e)}")

    def clear_history(self):
        """
        Clear the chat history and reset the agent's memory.
        """
        self.agent.reset()
        return [], []

    def disable_query(self, text_input):
        """
        Disable the text input and submit button while the agent is processing.
        """
        import gradio as gr

        return (
            text_input,
            gr.Textbox(
                value="",
                placeholder="Wait for answer completion before submitting a new prompt...",
                interactive=False
            ),
            gr.Button(interactive=False),
        )

    def enable_query(self):
        """
        Enable the text input and submit button after the agent has finished processing.
        """
        import gradio as gr

        return (
            gr.Textbox(
                interactive=True, 
                placeholder="Enter your prompt here and press Shift+Enter or the button"
            ),
            gr.Button(interactive=True),
        )

    def launch(self, share: bool = True, **kwargs):
        """
        Launch the Gradio app with the agent interface.

        Args:
            share (`bool`, defaults to `True`): Whether to share the app publicly.
            **kwargs: Additional keyword arguments to pass to the Gradio launch method.
        """
        self.create_app().launch(debug=True, share=share, **kwargs)

    def get_tavily_credits(self):
        """
        Fetch the Tavily credits.
        """
        return self.agent.get_search_credits()

    def get_advanced_mode(self) -> bool:
        """
        Return the agent's current advanced_mode flag for initializing the checkbox on page load.
        """
        return getattr(self.agent, "advanced_mode", False)

    def create_app(self):
        import gradio as gr

        # some nice thmes available here: https://huggingface.co/spaces/gradio/theme-gallery
        with gr.Blocks(theme="JohnSmith9982/small_and_pretty", fill_height=True) as agent:

            # Set up states to hold the session information
            stored_query = gr.State("")             # current user query
            stored_messages_verbose = gr.State([])  # full reasoning history
            stored_messages_quiet = gr.State([])    # only user + final answer

            with gr.Sidebar():
                gr.Markdown(
                    "# SmolAlbert πŸ€–"
                )

                with gr.Group():
                    gr.Markdown("**Your request**", container=True)
                    text_input = gr.Textbox(
                        lines=3,
                        label="Chat Message",
                        container=False,
                        placeholder="Enter your prompt here and press Shift+Enter or press the button",
                    )
                    submit_btn = gr.Button("Submit", variant="primary")

                # Advanced search mode checkbox
                advanced_checkbox = gr.Checkbox(
                    label="Advanced search mode",
                    value=getattr(self.agent, "advanced_mode", False),
                    info="Toggle advanced search behavior for the agent (x2 search credits).",
                    container=True,
                )

                # call agent configuration when checkbox changes
                advanced_checkbox.change(self.set_advanced_mode, advanced_checkbox, None)
                # ensure the checkbox reflects the current agent state each time a page/session loads
                agent.load(self.get_advanced_mode, None, advanced_checkbox)

                tavily_credits = gr.Textbox(
                    label="Tavily Credits",
                    value=self.get_tavily_credits(),
                    interactive=False,
                    container=True,
                )

                gr.HTML(
                    "<br><br><h4><center>Powered by <a target='_blank' href='https://github.com/huggingface/smolagents'><b>smolagents</b></a></center></h4>"
                )

            with gr.Tab("Quiet", scale=1):

                quiet_chatbot = gr.Chatbot(
                    label="Agent",
                    type="messages",
                    avatar_images=(
                        None,
                        "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/smolagents/mascot_smol.png",
                    ),
                    resizeable=True,
                    scale=1,
                    latex_delimiters=[
                        {"left": r"$$", "right": r"$$", "display": True},
                        {"left": r"$", "right": r"$", "display": False},
                        {"left": r"\[", "right": r"\]", "display": True},
                        {"left": r"\(", "right": r"\)", "display": False},
                    ],
                )

            with gr.Tab("Chatterbox", scale=1):

                verbose_chatbot = gr.Chatbot(
                    label="Agent",
                    type="messages",
                    avatar_images=(
                        None,
                        "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/smolagents/mascot_smol.png",
                    ),
                    resizeable=True,
                    scale=1,
                    latex_delimiters=[
                        {"left": r"$$", "right": r"$$", "display": True},
                        {"left": r"$", "right": r"$", "display": False},
                        {"left": r"\[", "right": r"\]", "display": True},
                        {"left": r"\(", "right": r"\)", "display": False},
                    ],
                )

            # Main input handlers: call interact_with_agent(prompt, verbose_state, quiet_state)
            text_input.submit(
                self.disable_query,
                text_input,
                [stored_query, text_input, submit_btn]
            ).then(
                self.interact_with_agent,
                [stored_query, stored_messages_verbose, stored_messages_quiet],
                [verbose_chatbot, quiet_chatbot],
            ).then(
                self.get_tavily_credits,
                None,
                tavily_credits,
            ).then(
                self.enable_query,
                None,
                [text_input, submit_btn],
            )

            submit_btn.click(
                self.disable_query,
                text_input,
                [stored_query, text_input, submit_btn]
            ).then(
                self.interact_with_agent,
                [stored_query, stored_messages_verbose, stored_messages_quiet],
                [verbose_chatbot, quiet_chatbot],
            ).then(
                self.get_tavily_credits,
                None,
                tavily_credits,
            ).then(
                self.enable_query,
                None,
                [text_input, submit_btn],
            )

            # bind clears to both chat components so agent memory is reset
            quiet_chatbot.clear(self.clear_history, inputs=None, outputs=[stored_messages_verbose, stored_messages_quiet])
            verbose_chatbot.clear(self.clear_history, inputs=None, outputs=[stored_messages_verbose, stored_messages_quiet])

        return agent