aishaikds's picture
Update app.py
ba4392a verified
import gradio as gr
from PIL import Image, ImageDraw, ImageFont
import cv2
import numpy as np
import pandas as pd
import tempfile
import sys
import os
from huggingface_hub import hf_hub_download
print("="*60)
print("Setting up RF-DETR SoccerNet Model...")
print("="*60)
repo_id = "julianzu9612/RFDETR-Soccernet"
try:
# Download inference.py
print("\nDownloading inference.py...")
inference_path = hf_hub_download(repo_id=repo_id, filename="inference.py")
# Read the file
with open(inference_path, 'r') as f:
inference_code = f.read()
print("\nπŸ”§ Patching inference.py...")
print(" Changing: RFDETRBase() β†’ RFDETRLarge()")
# THE FIX: Replace RFDETRBase with RFDETRLarge
inference_code = inference_code.replace(
'from rfdetr import RFDETRBase',
'from rfdetr import RFDETRLarge'
)
inference_code = inference_code.replace(
'self.model = RFDETRBase()',
'self.model = RFDETRLarge()'
)
# Save the patched version
with open(inference_path, 'w') as f:
f.write(inference_code)
print("βœ“ Patched inference.py successfully!")
# Download weights
print("\nDownloading model weights...")
weights_path = hf_hub_download(repo_id=repo_id, filename="weights/checkpoint_best_regular.pth")
print(f"βœ“ Downloaded weights")
# Setup environment
cache_dir = os.path.dirname(inference_path)
if cache_dir not in sys.path:
sys.path.insert(0, cache_dir)
original_dir = os.getcwd()
os.chdir(cache_dir)
# Create weights directory structure
weights_dir = os.path.join(cache_dir, "weights")
os.makedirs(weights_dir, exist_ok=True)
expected_weights = os.path.join(weights_dir, "checkpoint_best_regular.pth")
if not os.path.exists(expected_weights):
import shutil
shutil.copy(weights_path, expected_weights)
print(f"βœ“ Weights copied to: {expected_weights}")
print("\n" + "="*60)
print("Initializing RF-DETR SoccerNet Model...")
print("="*60)
# Import and initialize the patched model
from inference import RFDETRSoccerNet
detector = RFDETRSoccerNet()
print("\nβœ… Model loaded successfully!")
os.chdir(original_dir)
except Exception as e:
print(f"\n❌ Error: {e}")
import traceback
traceback.print_exc()
raise
# Helper functions for Gradio
def draw_detections_on_image(image, df):
"""Draw bounding boxes on PIL image"""
draw = ImageDraw.Draw(image)
try:
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", 16)
except:
font = ImageFont.load_default()
colors = {
'ball': (255, 0, 0),
'player': (0, 255, 0),
'referee': (255, 255, 0),
'goalkeeper': (0, 0, 255)
}
for _, row in df.iterrows():
x1, y1, x2, y2 = row['x1'], row['y1'], row['x2'], row['y2']
class_name = row['class_name']
conf = row['confidence']
color = colors.get(class_name, (255, 255, 255))
draw.rectangle([x1, y1, x2, y2], outline=color, width=3)
text = f"{class_name}: {conf:.2f}"
bbox = draw.textbbox((x1, y1-20), text, font=font)
draw.rectangle([bbox[0]-2, bbox[1]-2, bbox[2]+2, bbox[3]+2], fill=color)
draw.text((x1, y1-20), text, fill=(0, 0, 0), font=font)
return image
def process_image_interface(image, confidence_threshold):
"""Process image with the model"""
if image is None:
return None, pd.DataFrame()
try:
# Save temporary image
temp_path = tempfile.mktemp(suffix='.jpg')
Image.fromarray(image if isinstance(image, np.ndarray) else np.array(image)).save(temp_path)
# Process with model
df = detector.process_image(temp_path, confidence_threshold=confidence_threshold)
# Draw detections
img = Image.open(temp_path)
annotated_img = draw_detections_on_image(img, df)
# Cleanup
os.remove(temp_path)
return annotated_img, df
except Exception as e:
print(f"Error processing image: {e}")
import traceback
traceback.print_exc()
return None, pd.DataFrame()
def process_video_interface(video, confidence_threshold, frame_skip, max_frames):
"""Process video with the model"""
if video is None:
return None, pd.DataFrame()
try:
max_frames_val = int(max_frames) if max_frames > 0 else None
# Process video
print(f"Processing video with confidence={confidence_threshold}, frame_skip={frame_skip}, max_frames={max_frames_val}")
df = detector.process_video(
video,
confidence_threshold=confidence_threshold,
frame_skip=int(frame_skip),
max_frames=max_frames_val
)
# Create annotated video
cap = cv2.VideoCapture(video)
fps = int(cap.get(cv2.CAP_PROP_FPS))
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
output_path = tempfile.mktemp(suffix='.mp4')
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
frame_num = 0
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
# Get detections for this frame
frame_detections = df[df['frame'] == frame_num]
if not frame_detections.empty:
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
pil_img = Image.fromarray(rgb_frame)
annotated_pil = draw_detections_on_image(pil_img, frame_detections)
frame = cv2.cvtColor(np.array(annotated_pil), cv2.COLOR_RGB2BGR)
out.write(frame)
frame_num += 1
cap.release()
out.release()
return output_path, df
except Exception as e:
print(f"Error processing video: {e}")
import traceback
traceback.print_exc()
return None, pd.DataFrame()
# Create Gradio interface
with gr.Blocks(title="⚽ Soccer Object Detection", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# ⚽ Soccer Object Detection with RF-DETR
Professional-grade object detection for soccer videos using RF-DETR-Large model.
### Model: [julianzu9612/RFDETR-Soccernet](https://huggingface.co/julianzu9612/RFDETR-Soccernet)
- **Architecture**: RF-DETR-Large (128M parameters)
- **Performance**: 85.7% mAP@50, 49.8% mAP
- **Dataset**: SoccerNet-Tracking 2023 (42,750 images)
- **Classes**: Ball, Player, Referee, Goalkeeper
""")
with gr.Tab("πŸ“Έ Image Detection"):
gr.Markdown("### Upload a soccer image to detect objects")
with gr.Row():
with gr.Column():
image_input = gr.Image(label="Upload Soccer Image", type="numpy")
image_confidence = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.5,
step=0.05,
label="Confidence Threshold",
info="Lower values detect more objects but may include false positives"
)
image_button = gr.Button("πŸ” Detect Objects", variant="primary", size="lg")
with gr.Column():
image_output = gr.Image(label="Detected Objects")
image_detections = gr.Dataframe(
label="Detection Results",
wrap=True,
interactive=False
)
image_button.click(
fn=process_image_interface,
inputs=[image_input, image_confidence],
outputs=[image_output, image_detections]
)
gr.Examples(
examples=[],
inputs=image_input,
label="Example Images (Upload your own!)"
)
with gr.Tab("πŸŽ₯ Video Detection"):
gr.Markdown("### Upload a soccer video to track objects frame by frame")
with gr.Row():
with gr.Column():
video_input = gr.Video(label="Upload Soccer Video")
video_confidence = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.5,
step=0.05,
label="Confidence Threshold"
)
video_frame_skip = gr.Slider(
minimum=1,
maximum=10,
value=5,
step=1,
label="Frame Skip",
info="Process every Nth frame (higher = faster but less detections)"
)
video_max_frames = gr.Number(
value=300,
label="Max Frames to Process",
info="Set to 0 to process entire video (300 frames β‰ˆ 10 seconds at 30 FPS)"
)
gr.Markdown("""
#### ⚑ Performance Tips:
- **CPU**: 2-3 FPS (slow) - Use frame_skip=5 and limit frames
- **GPU**: 12-30 FPS (fast) - Can process full videos
- **Quick test**: Use 300 frames with frame_skip=5
""")
video_button = gr.Button("🎬 Process Video", variant="primary", size="lg")
with gr.Column():
video_output = gr.Video(label="Annotated Video")
video_detections = gr.Dataframe(
label="Detection Results",
wrap=True,
interactive=False
)
video_button.click(
fn=process_video_interface,
inputs=[video_input, video_confidence, video_frame_skip, video_max_frames],
outputs=[video_output, video_detections]
)
with gr.Tab("ℹ️ About"):
gr.Markdown("""
## About This Model
### 🎯 Detected Classes
| Class | Color | Precision | Description |
|-------|-------|-----------|-------------|
| πŸ”΄ Ball | Red | 78.5% | Soccer ball detection |
| 🟒 Player | Green | 91.3% | Field players from both teams |
| 🟑 Referee | Yellow | 85.2% | Match officials |
| πŸ”΅ Goalkeeper | Blue | 88.9% | Specialized goalkeeper detection |
### πŸ“Š Model Performance
- **mAP@50**: 85.7%
- **mAP**: 49.8%
- **mAP@75**: 52.0%
- **Parameters**: 128M
- **Training Time**: ~14 hours on NVIDIA A100 40GB
### πŸŽ“ Training Details
- **Dataset**: SoccerNet-Tracking 2023
- **Images**: 42,750 annotated images
- **Source**: Professional soccer broadcasts
- **Input Resolution**: 1280x1280 pixels
- **Optimizer**: AdamW (lr=1e-4)
### πŸ’‘ Best Practices
1. **Confidence Threshold**:
- Use 0.5 for general detection
- Use 0.7+ for high-precision applications
2. **Video Quality**:
- Works best on 720p+ broadcast footage
- Standard broadcast camera angles preferred
3. **Frame Processing**:
- frame_skip=1: Every frame (best accuracy, slow)
- frame_skip=5: Every 5th frame (good balance)
- frame_skip=10: Every 10th frame (fast, lower accuracy)
### 🚨 Limitations
- Optimized for professional broadcast footage
- May have reduced accuracy in poor lighting
- Small balls may be missed when heavily occluded
- Camera angle dependency
### πŸ“š Use Cases
- **Sports Analytics**: Player tracking, formation analysis
- **Broadcast Enhancement**: Automatic highlighting, statistics overlay
- **Research**: Tactical analysis, computer vision benchmarking
- **Video Analytics**: Automated video processing pipelines
### πŸ”— Links
- [Model on Hugging Face](https://huggingface.co/julianzu9612/RFDETR-Soccernet)
- [SoccerNet Dataset](https://www.soccer-net.org/)
- [RF-DETR Paper](https://arxiv.org/abs/2304.08069)
### πŸ“„ Citation
```bibtex
@misc{rfdetr-soccernet-2025,
title={RF-DETR SoccerNet: High-Performance Soccer Object Detection},
author={Computer Vision Research Team},
year={2025},
publisher={Hugging Face},
url={https://huggingface.co/julianzu9612/rf-detr-soccernet}
}
```
---
**License**: Apache 2.0
""")
print("\n" + "="*60)
print("πŸš€ Launching Gradio Interface...")
print("="*60)
demo.launch()