File size: 13,154 Bytes
4936e1f 7efdeb6 c0126d3 ba4392a 4936e1f 7efdeb6 ba4392a 7efdeb6 4936e1f 7efdeb6 4936e1f 7efdeb6 043e930 ba4392a f3f3544 ba4392a f3f3544 ba4392a f3f3544 ba4392a f3f3544 ba4392a f3f3544 ba4392a f3f3544 ba4392a f3f3544 043e930 ba4392a 043e930 ba4392a 043e930 ba4392a 043e930 ba4392a 043e930 f3f3544 043e930 ba4392a 043e930 ba4392a 043e930 ba4392a 043e930 ba4392a 043e930 7efdeb6 043e930 7efdeb6 ba4392a 7efdeb6 ba4392a 7efdeb6 4936e1f 7efdeb6 4936e1f ba4392a 4936e1f 7efdeb6 4936e1f 7efdeb6 ba4392a 7efdeb6 4936e1f ba4392a 4936e1f 043e930 ba4392a 043e930 f3f3544 043e930 ba4392a 043e930 ba4392a 043e930 ba4392a 043e930 ba4392a 043e930 ba4392a 043e930 4936e1f ba4392a 4936e1f 043e930 ba4392a 043e930 ba4392a 043e930 ba4392a 043e930 ba4392a 043e930 ba4392a 043e930 ba4392a 043e930 ba4392a 043e930 ba4392a 043e930 ba4392a 043e930 4936e1f ba4392a 4936e1f ba4392a 4936e1f ba4392a 4936e1f ba4392a 4936e1f ba4392a 4936e1f ba4392a 4936e1f ba4392a 4936e1f ba4392a 4936e1f ba4392a 4936e1f ba4392a 4936e1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 |
import gradio as gr
from PIL import Image, ImageDraw, ImageFont
import cv2
import numpy as np
import pandas as pd
import tempfile
import sys
import os
from huggingface_hub import hf_hub_download
print("="*60)
print("Setting up RF-DETR SoccerNet Model...")
print("="*60)
repo_id = "julianzu9612/RFDETR-Soccernet"
try:
# Download inference.py
print("\nDownloading inference.py...")
inference_path = hf_hub_download(repo_id=repo_id, filename="inference.py")
# Read the file
with open(inference_path, 'r') as f:
inference_code = f.read()
print("\nπ§ Patching inference.py...")
print(" Changing: RFDETRBase() β RFDETRLarge()")
# THE FIX: Replace RFDETRBase with RFDETRLarge
inference_code = inference_code.replace(
'from rfdetr import RFDETRBase',
'from rfdetr import RFDETRLarge'
)
inference_code = inference_code.replace(
'self.model = RFDETRBase()',
'self.model = RFDETRLarge()'
)
# Save the patched version
with open(inference_path, 'w') as f:
f.write(inference_code)
print("β Patched inference.py successfully!")
# Download weights
print("\nDownloading model weights...")
weights_path = hf_hub_download(repo_id=repo_id, filename="weights/checkpoint_best_regular.pth")
print(f"β Downloaded weights")
# Setup environment
cache_dir = os.path.dirname(inference_path)
if cache_dir not in sys.path:
sys.path.insert(0, cache_dir)
original_dir = os.getcwd()
os.chdir(cache_dir)
# Create weights directory structure
weights_dir = os.path.join(cache_dir, "weights")
os.makedirs(weights_dir, exist_ok=True)
expected_weights = os.path.join(weights_dir, "checkpoint_best_regular.pth")
if not os.path.exists(expected_weights):
import shutil
shutil.copy(weights_path, expected_weights)
print(f"β Weights copied to: {expected_weights}")
print("\n" + "="*60)
print("Initializing RF-DETR SoccerNet Model...")
print("="*60)
# Import and initialize the patched model
from inference import RFDETRSoccerNet
detector = RFDETRSoccerNet()
print("\nβ
Model loaded successfully!")
os.chdir(original_dir)
except Exception as e:
print(f"\nβ Error: {e}")
import traceback
traceback.print_exc()
raise
# Helper functions for Gradio
def draw_detections_on_image(image, df):
"""Draw bounding boxes on PIL image"""
draw = ImageDraw.Draw(image)
try:
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", 16)
except:
font = ImageFont.load_default()
colors = {
'ball': (255, 0, 0),
'player': (0, 255, 0),
'referee': (255, 255, 0),
'goalkeeper': (0, 0, 255)
}
for _, row in df.iterrows():
x1, y1, x2, y2 = row['x1'], row['y1'], row['x2'], row['y2']
class_name = row['class_name']
conf = row['confidence']
color = colors.get(class_name, (255, 255, 255))
draw.rectangle([x1, y1, x2, y2], outline=color, width=3)
text = f"{class_name}: {conf:.2f}"
bbox = draw.textbbox((x1, y1-20), text, font=font)
draw.rectangle([bbox[0]-2, bbox[1]-2, bbox[2]+2, bbox[3]+2], fill=color)
draw.text((x1, y1-20), text, fill=(0, 0, 0), font=font)
return image
def process_image_interface(image, confidence_threshold):
"""Process image with the model"""
if image is None:
return None, pd.DataFrame()
try:
# Save temporary image
temp_path = tempfile.mktemp(suffix='.jpg')
Image.fromarray(image if isinstance(image, np.ndarray) else np.array(image)).save(temp_path)
# Process with model
df = detector.process_image(temp_path, confidence_threshold=confidence_threshold)
# Draw detections
img = Image.open(temp_path)
annotated_img = draw_detections_on_image(img, df)
# Cleanup
os.remove(temp_path)
return annotated_img, df
except Exception as e:
print(f"Error processing image: {e}")
import traceback
traceback.print_exc()
return None, pd.DataFrame()
def process_video_interface(video, confidence_threshold, frame_skip, max_frames):
"""Process video with the model"""
if video is None:
return None, pd.DataFrame()
try:
max_frames_val = int(max_frames) if max_frames > 0 else None
# Process video
print(f"Processing video with confidence={confidence_threshold}, frame_skip={frame_skip}, max_frames={max_frames_val}")
df = detector.process_video(
video,
confidence_threshold=confidence_threshold,
frame_skip=int(frame_skip),
max_frames=max_frames_val
)
# Create annotated video
cap = cv2.VideoCapture(video)
fps = int(cap.get(cv2.CAP_PROP_FPS))
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
output_path = tempfile.mktemp(suffix='.mp4')
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
frame_num = 0
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
# Get detections for this frame
frame_detections = df[df['frame'] == frame_num]
if not frame_detections.empty:
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
pil_img = Image.fromarray(rgb_frame)
annotated_pil = draw_detections_on_image(pil_img, frame_detections)
frame = cv2.cvtColor(np.array(annotated_pil), cv2.COLOR_RGB2BGR)
out.write(frame)
frame_num += 1
cap.release()
out.release()
return output_path, df
except Exception as e:
print(f"Error processing video: {e}")
import traceback
traceback.print_exc()
return None, pd.DataFrame()
# Create Gradio interface
with gr.Blocks(title="β½ Soccer Object Detection", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# β½ Soccer Object Detection with RF-DETR
Professional-grade object detection for soccer videos using RF-DETR-Large model.
### Model: [julianzu9612/RFDETR-Soccernet](https://huggingface.co/julianzu9612/RFDETR-Soccernet)
- **Architecture**: RF-DETR-Large (128M parameters)
- **Performance**: 85.7% mAP@50, 49.8% mAP
- **Dataset**: SoccerNet-Tracking 2023 (42,750 images)
- **Classes**: Ball, Player, Referee, Goalkeeper
""")
with gr.Tab("πΈ Image Detection"):
gr.Markdown("### Upload a soccer image to detect objects")
with gr.Row():
with gr.Column():
image_input = gr.Image(label="Upload Soccer Image", type="numpy")
image_confidence = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.5,
step=0.05,
label="Confidence Threshold",
info="Lower values detect more objects but may include false positives"
)
image_button = gr.Button("π Detect Objects", variant="primary", size="lg")
with gr.Column():
image_output = gr.Image(label="Detected Objects")
image_detections = gr.Dataframe(
label="Detection Results",
wrap=True,
interactive=False
)
image_button.click(
fn=process_image_interface,
inputs=[image_input, image_confidence],
outputs=[image_output, image_detections]
)
gr.Examples(
examples=[],
inputs=image_input,
label="Example Images (Upload your own!)"
)
with gr.Tab("π₯ Video Detection"):
gr.Markdown("### Upload a soccer video to track objects frame by frame")
with gr.Row():
with gr.Column():
video_input = gr.Video(label="Upload Soccer Video")
video_confidence = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.5,
step=0.05,
label="Confidence Threshold"
)
video_frame_skip = gr.Slider(
minimum=1,
maximum=10,
value=5,
step=1,
label="Frame Skip",
info="Process every Nth frame (higher = faster but less detections)"
)
video_max_frames = gr.Number(
value=300,
label="Max Frames to Process",
info="Set to 0 to process entire video (300 frames β 10 seconds at 30 FPS)"
)
gr.Markdown("""
#### β‘ Performance Tips:
- **CPU**: 2-3 FPS (slow) - Use frame_skip=5 and limit frames
- **GPU**: 12-30 FPS (fast) - Can process full videos
- **Quick test**: Use 300 frames with frame_skip=5
""")
video_button = gr.Button("π¬ Process Video", variant="primary", size="lg")
with gr.Column():
video_output = gr.Video(label="Annotated Video")
video_detections = gr.Dataframe(
label="Detection Results",
wrap=True,
interactive=False
)
video_button.click(
fn=process_video_interface,
inputs=[video_input, video_confidence, video_frame_skip, video_max_frames],
outputs=[video_output, video_detections]
)
with gr.Tab("βΉοΈ About"):
gr.Markdown("""
## About This Model
### π― Detected Classes
| Class | Color | Precision | Description |
|-------|-------|-----------|-------------|
| π΄ Ball | Red | 78.5% | Soccer ball detection |
| π’ Player | Green | 91.3% | Field players from both teams |
| π‘ Referee | Yellow | 85.2% | Match officials |
| π΅ Goalkeeper | Blue | 88.9% | Specialized goalkeeper detection |
### π Model Performance
- **mAP@50**: 85.7%
- **mAP**: 49.8%
- **mAP@75**: 52.0%
- **Parameters**: 128M
- **Training Time**: ~14 hours on NVIDIA A100 40GB
### π Training Details
- **Dataset**: SoccerNet-Tracking 2023
- **Images**: 42,750 annotated images
- **Source**: Professional soccer broadcasts
- **Input Resolution**: 1280x1280 pixels
- **Optimizer**: AdamW (lr=1e-4)
### π‘ Best Practices
1. **Confidence Threshold**:
- Use 0.5 for general detection
- Use 0.7+ for high-precision applications
2. **Video Quality**:
- Works best on 720p+ broadcast footage
- Standard broadcast camera angles preferred
3. **Frame Processing**:
- frame_skip=1: Every frame (best accuracy, slow)
- frame_skip=5: Every 5th frame (good balance)
- frame_skip=10: Every 10th frame (fast, lower accuracy)
### π¨ Limitations
- Optimized for professional broadcast footage
- May have reduced accuracy in poor lighting
- Small balls may be missed when heavily occluded
- Camera angle dependency
### π Use Cases
- **Sports Analytics**: Player tracking, formation analysis
- **Broadcast Enhancement**: Automatic highlighting, statistics overlay
- **Research**: Tactical analysis, computer vision benchmarking
- **Video Analytics**: Automated video processing pipelines
### π Links
- [Model on Hugging Face](https://huggingface.co/julianzu9612/RFDETR-Soccernet)
- [SoccerNet Dataset](https://www.soccer-net.org/)
- [RF-DETR Paper](https://arxiv.org/abs/2304.08069)
### π Citation
```bibtex
@misc{rfdetr-soccernet-2025,
title={RF-DETR SoccerNet: High-Performance Soccer Object Detection},
author={Computer Vision Research Team},
year={2025},
publisher={Hugging Face},
url={https://huggingface.co/julianzu9612/rf-detr-soccernet}
}
```
---
**License**: Apache 2.0
""")
print("\n" + "="*60)
print("π Launching Gradio Interface...")
print("="*60)
demo.launch() |