adityaardak's picture
Update app.py
4a30650 verified
import gradio as gr
import torch
from PIL import Image
from transformers import AutoTokenizer, AutoModelForCausalLM
# ---- CPU-only config ----
MID = "apple/FastVLM-0.5B"
IMAGE_TOKEN_INDEX = -200 # special image token id used by FastVLM
tok = None
model = None
def load_model():
global tok, model
if tok is None or model is None:
print("Loading model (CPU)…")
tok = AutoTokenizer.from_pretrained(MID, trust_remote_code=True)
# Force CPU + float32 (fp16 is unsafe on CPU)
model = AutoModelForCausalLM.from_pretrained(
MID,
torch_dtype=torch.float32,
device_map="cpu",
trust_remote_code=True,
)
print("Model loaded successfully on CPU!")
return tok, model
def caption_image(image, custom_prompt=None):
"""
Generate a caption for the input image (CPU-only).
"""
if image is None:
return "Please upload an image first."
try:
tok, model = load_model()
# Convert image to RGB if needed
if image.mode != "RGB":
image = image.convert("RGB")
prompt = custom_prompt if custom_prompt else "Describe this image in detail."
# Single-turn chat with an <image> placeholder
messages = [{"role": "user", "content": f"<image>\n{prompt}"}]
rendered = tok.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
# Split around the literal "<image>"
pre, post = rendered.split("<image>", 1)
# Tokenize text around the image token
pre_ids = tok(pre, return_tensors="pt", add_special_tokens=False).input_ids
post_ids = tok(post, return_tensors="pt", add_special_tokens=False).input_ids
# Derive device/dtype from the loaded model (CPU here, but future-proof)
model_device = next(model.parameters()).device
model_dtype = next(model.parameters()).dtype
# Insert IMAGE token id at placeholder position
img_tok = torch.tensor([[IMAGE_TOKEN_INDEX]], dtype=pre_ids.dtype, device=model_device)
input_ids = torch.cat(
[pre_ids.to(model_device), img_tok, post_ids.to(model_device)],
dim=1
)
attention_mask = torch.ones_like(input_ids, device=model_device)
# Preprocess image using model's vision tower
px = model.get_vision_tower().image_processor(
images=image, return_tensors="pt"
)["pixel_values"].to(device=model_device, dtype=model_dtype)
# Generate caption (deterministic)
with torch.no_grad():
out = model.generate(
inputs=input_ids,
attention_mask=attention_mask,
images=px,
max_new_tokens=128,
do_sample=False, # temperature is ignored when sampling is off
)
# Decode and slice to the assistant part if present
generated_text = tok.decode(out[0], skip_special_tokens=True)
if "Assistant:" in generated_text:
response = generated_text.split("Assistant:", 1)[-1].strip()
elif "assistant" in generated_text:
response = generated_text.split("assistant", 1)[-1].strip()
else:
response = generated_text.strip()
return response
except Exception as e:
return f"Error generating caption: {str(e)}"
# ---- Gradio UI (CPU) ----
with gr.Blocks(title="FastVLM Image Captioning (CPU)") as demo:
gr.Markdown(
"""
# 🖼️ FastVLM Image Captioning (CPU)
Upload an image to generate a detailed caption using Apple's FastVLM-0.5B.
This build runs on **CPU only**. Expect slower generation than GPU.
"""
)
with gr.Row():
with gr.Column():
image_input = gr.Image(type="pil", label="Upload Image", elem_id="image-upload")
custom_prompt = gr.Textbox(
label="Custom Prompt (Optional)",
placeholder="Leave empty for default: 'Describe this image in detail.'",
lines=2
)
with gr.Row():
clear_btn = gr.ClearButton([image_input, custom_prompt])
generate_btn = gr.Button("Generate Caption", variant="primary")
with gr.Column():
output = gr.Textbox(
label="Generated Caption",
lines=8,
max_lines=15,
show_copy_button=True
)
generate_btn.click(fn=caption_image, inputs=[image_input, custom_prompt], outputs=output)
# Also generate on image upload if no custom prompt
def _auto_caption(img, prompt):
return caption_image(img, prompt) if (img is not None and not prompt) else None
image_input.change(fn=_auto_caption, inputs=[image_input, custom_prompt], outputs=output)
gr.Markdown(
"""
---
**Model:** [apple/FastVLM-0.5B](https://huggingface.co/apple/FastVLM-0.5B)
**Note:** CPU-only run. For speed, switch to a CUDA GPU build or a GPU Space.
"""
)
if __name__ == "__main__":
demo.launch(
share=False,
show_error=True,
server_name="0.0.0.0",
server_port=7860
)