adityaardak commited on
Commit
4a30650
·
verified ·
1 Parent(s): 40c09b4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +141 -0
app.py CHANGED
@@ -1,3 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  if __name__ == "__main__":
2
  demo.launch(
3
  share=False,
 
1
+ import gradio as gr
2
+ import torch
3
+ from PIL import Image
4
+ from transformers import AutoTokenizer, AutoModelForCausalLM
5
+
6
+ # ---- CPU-only config ----
7
+ MID = "apple/FastVLM-0.5B"
8
+ IMAGE_TOKEN_INDEX = -200 # special image token id used by FastVLM
9
+
10
+ tok = None
11
+ model = None
12
+
13
+ def load_model():
14
+ global tok, model
15
+ if tok is None or model is None:
16
+ print("Loading model (CPU)…")
17
+ tok = AutoTokenizer.from_pretrained(MID, trust_remote_code=True)
18
+ # Force CPU + float32 (fp16 is unsafe on CPU)
19
+ model = AutoModelForCausalLM.from_pretrained(
20
+ MID,
21
+ torch_dtype=torch.float32,
22
+ device_map="cpu",
23
+ trust_remote_code=True,
24
+ )
25
+ print("Model loaded successfully on CPU!")
26
+ return tok, model
27
+
28
+ def caption_image(image, custom_prompt=None):
29
+ """
30
+ Generate a caption for the input image (CPU-only).
31
+ """
32
+ if image is None:
33
+ return "Please upload an image first."
34
+
35
+ try:
36
+ tok, model = load_model()
37
+
38
+ # Convert image to RGB if needed
39
+ if image.mode != "RGB":
40
+ image = image.convert("RGB")
41
+
42
+ prompt = custom_prompt if custom_prompt else "Describe this image in detail."
43
+
44
+ # Single-turn chat with an <image> placeholder
45
+ messages = [{"role": "user", "content": f"<image>\n{prompt}"}]
46
+ rendered = tok.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
47
+
48
+ # Split around the literal "<image>"
49
+ pre, post = rendered.split("<image>", 1)
50
+
51
+ # Tokenize text around the image token
52
+ pre_ids = tok(pre, return_tensors="pt", add_special_tokens=False).input_ids
53
+ post_ids = tok(post, return_tensors="pt", add_special_tokens=False).input_ids
54
+
55
+ # Derive device/dtype from the loaded model (CPU here, but future-proof)
56
+ model_device = next(model.parameters()).device
57
+ model_dtype = next(model.parameters()).dtype
58
+
59
+ # Insert IMAGE token id at placeholder position
60
+ img_tok = torch.tensor([[IMAGE_TOKEN_INDEX]], dtype=pre_ids.dtype, device=model_device)
61
+ input_ids = torch.cat(
62
+ [pre_ids.to(model_device), img_tok, post_ids.to(model_device)],
63
+ dim=1
64
+ )
65
+ attention_mask = torch.ones_like(input_ids, device=model_device)
66
+
67
+ # Preprocess image using model's vision tower
68
+ px = model.get_vision_tower().image_processor(
69
+ images=image, return_tensors="pt"
70
+ )["pixel_values"].to(device=model_device, dtype=model_dtype)
71
+
72
+ # Generate caption (deterministic)
73
+ with torch.no_grad():
74
+ out = model.generate(
75
+ inputs=input_ids,
76
+ attention_mask=attention_mask,
77
+ images=px,
78
+ max_new_tokens=128,
79
+ do_sample=False, # temperature is ignored when sampling is off
80
+ )
81
+
82
+ # Decode and slice to the assistant part if present
83
+ generated_text = tok.decode(out[0], skip_special_tokens=True)
84
+ if "Assistant:" in generated_text:
85
+ response = generated_text.split("Assistant:", 1)[-1].strip()
86
+ elif "assistant" in generated_text:
87
+ response = generated_text.split("assistant", 1)[-1].strip()
88
+ else:
89
+ response = generated_text.strip()
90
+
91
+ return response
92
+
93
+ except Exception as e:
94
+ return f"Error generating caption: {str(e)}"
95
+
96
+ # ---- Gradio UI (CPU) ----
97
+ with gr.Blocks(title="FastVLM Image Captioning (CPU)") as demo:
98
+ gr.Markdown(
99
+ """
100
+ # 🖼️ FastVLM Image Captioning (CPU)
101
+ Upload an image to generate a detailed caption using Apple's FastVLM-0.5B.
102
+ This build runs on **CPU only**. Expect slower generation than GPU.
103
+ """
104
+ )
105
+
106
+ with gr.Row():
107
+ with gr.Column():
108
+ image_input = gr.Image(type="pil", label="Upload Image", elem_id="image-upload")
109
+ custom_prompt = gr.Textbox(
110
+ label="Custom Prompt (Optional)",
111
+ placeholder="Leave empty for default: 'Describe this image in detail.'",
112
+ lines=2
113
+ )
114
+ with gr.Row():
115
+ clear_btn = gr.ClearButton([image_input, custom_prompt])
116
+ generate_btn = gr.Button("Generate Caption", variant="primary")
117
+
118
+ with gr.Column():
119
+ output = gr.Textbox(
120
+ label="Generated Caption",
121
+ lines=8,
122
+ max_lines=15,
123
+ show_copy_button=True
124
+ )
125
+
126
+ generate_btn.click(fn=caption_image, inputs=[image_input, custom_prompt], outputs=output)
127
+
128
+ # Also generate on image upload if no custom prompt
129
+ def _auto_caption(img, prompt):
130
+ return caption_image(img, prompt) if (img is not None and not prompt) else None
131
+
132
+ image_input.change(fn=_auto_caption, inputs=[image_input, custom_prompt], outputs=output)
133
+
134
+ gr.Markdown(
135
+ """
136
+ ---
137
+ **Model:** [apple/FastVLM-0.5B](https://huggingface.co/apple/FastVLM-0.5B)
138
+ **Note:** CPU-only run. For speed, switch to a CUDA GPU build or a GPU Space.
139
+ """
140
+ )
141
+
142
  if __name__ == "__main__":
143
  demo.launch(
144
  share=False,