Spaces:
Running
Running
File size: 20,014 Bytes
b612ad2 4f7f36a b612ad2 60c1f8a a3cf4a0 4f7f36a b612ad2 60c1f8a b612ad2 60c1f8a a3cf4a0 60c1f8a a3cf4a0 60c1f8a a3cf4a0 60c1f8a b612ad2 4f7f36a b612ad2 60c1f8a b612ad2 60c1f8a b612ad2 60c1f8a b612ad2 4f7f36a a3cf4a0 4f7f36a 60c1f8a 0e2b73d b612ad2 60c1f8a a3cf4a0 60c1f8a a3cf4a0 60c1f8a a3cf4a0 60c1f8a b612ad2 60c1f8a a3cf4a0 60c1f8a a3cf4a0 60c1f8a a3cf4a0 60c1f8a b612ad2 60c1f8a b612ad2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 |
import io
from pathlib import Path
import logging
import streamlit as st
import torch
import numpy as np
import soundfile as sf
from kokoro import KPipeline
from transformers import (
VitsModel,
AutoTokenizer,
SpeechT5Processor,
SpeechT5ForTextToSpeech,
SpeechT5HifiGan,
)
from datasets import load_dataset
from scipy.io.wavfile import write as wav_write
from huggingface_hub import InferenceClient, snapshot_download, hf_hub_download
from huggingface_hub.utils import HfHubHTTPError
# Pre-selected Arabic-focused TTS models on Hugging Face (verified public repos)
ARABIC_TTS_MODELS = {
"MMS (MSA) — facebook/mms-tts-ara": {
"repo_id": "facebook/mms-tts-ara",
"engine": "vits",
"hosted": False,
"description": "Official MMS checkpoint for Modern Standard Arabic",
},
"VITS (Community) — wasmdashai/vits-ar-sa-A": {
"repo_id": "wasmdashai/vits-ar-sa-A",
"engine": "vits",
"hosted": False,
"description": "Community-trained VITS voice focused on Arabic",
},
"SpeechT5 (CLAra) — MBZUAI/speecht5_tts_clartts_ar": {
"repo_id": "MBZUAI/speecht5_tts_clartts_ar",
"engine": "speecht5",
"hosted": False,
"description": "MBZUAI SpeechT5 fine-tune for Classical Arabic",
},
"Saudi TTS — AhmedEladl/saudi-tts": {
"repo_id": "AhmedEladl/saudi-tts",
"engine": "xtts",
"hosted": False,
"description": "Coqui XTTS-style Saudi Arabic model (.pth checkpoint). Provide local paths below.",
},
"XTTS v2 — coqui/XTTS-v2": {
"repo_id": "coqui/XTTS-v2",
"engine": "xtts",
"hosted": False,
"description": "Official Coqui XTTS v2. Use local snapshot and speaker WAV; supports synthesize().",
},
}
LOG_FILE = Path("app.log")
DEFAULT_DOWNLOAD_DIR = Path("models_cache")
def _init_logger() -> logging.Logger:
"""Configure logging once per Streamlit session."""
if not st.session_state.get("_logger_configured"):
LOG_FILE.parent.mkdir(parents=True, exist_ok=True)
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s | %(levelname)s | %(message)s",
handlers=[
logging.FileHandler(LOG_FILE, encoding="utf-8"),
logging.StreamHandler(),
],
)
st.session_state["_logger_configured"] = True
return logging.getLogger("arabic_tts_app")
logger = _init_logger()
st.set_page_config(page_title="Arabic TTS (Hugging Face)", page_icon="🗣️", layout="centered")
st.title("🗣️ Arabic Text-to-Speech — Hugging Face + Streamlit")
st.caption("Generate Arabic speech from text using four open-source Arabic-focused models (MMS, community VITS, and SpeechT5).")
# Sidebar configuration
st.sidebar.header("Model & Settings")
model_label = st.sidebar.selectbox("Choose a TTS model", list(ARABIC_TTS_MODELS.keys()))
model_meta = ARABIC_TTS_MODELS[model_label]
model_id = model_meta["repo_id"]
st.sidebar.markdown(
f"Selected: `{model_id}`\n\n"
f"{model_meta['description']}"
)
hf_token = st.sidebar.text_input(
"Optional: Hugging Face access token",
type="password",
help="Provide a token if you hit rate limits or want private usage."
)
# Model download controls
with st.sidebar.expander("Model assets", expanded=False):
download_dir = st.text_input(
"Local download directory",
value=str(DEFAULT_DOWNLOAD_DIR),
help="Where downloaded model files will be stored (relative or absolute path).",
)
download_now = st.button("⬇️ Download selected model", key="download_model_button")
if download_now:
try:
status = st.sidebar.info("Downloading… please wait.")
local_path = snapshot_download(
repo_id=model_id,
local_dir=download_dir,
token=hf_token or None,
)
status.empty()
st.sidebar.success(f"Model cached at {local_path}")
logger.info("Downloaded model %s to %s", model_id, local_path)
except HfHubHTTPError as hub_err:
st.sidebar.error(f"Hugging Face download error: {hub_err}")
logger.exception("HF download failed for %s", model_id)
except Exception as dl_err:
st.sidebar.error(f"Download failed: {dl_err}")
logger.exception("Download failed for %s", model_id)
# Remember last chosen download dir for defaults
try:
st.session_state["_last_download_dir"] = download_dir
except Exception:
pass
# XTTS-specific path inputs now that download_dir is defined
xtts_config_path = None
xtts_vocab_path = None
xtts_checkpoint_dir = None
xtts_speaker_wav = None
xtts_temperature = 0.75
if model_meta["engine"] == "xtts":
with st.sidebar.expander("XTTS local paths", expanded=True):
base = Path(st.session_state.get("_last_download_dir", DEFAULT_DOWNLOAD_DIR)).expanduser()
xtts_config_path = st.text_input(
"config.json path",
value=str(base / "config.json"),
help="Absolute or relative path to XTTS config.json",
)
xtts_vocab_path = st.text_input(
"vocab.json path",
value=str(base / "vocab.json"),
help="Optional: path to vocab.json (if required by your checkpoint)",
)
xtts_checkpoint_dir = st.text_input(
"Checkpoint directory",
value=str(base),
help="Directory containing the model .pth checkpoint",
)
xtts_speaker_wav = st.text_input(
"Speaker WAV path",
value=str(base / "speaker.wav"),
help="Path to a short reference WAV for voice cloning",
)
xtts_temperature = st.slider("XTTS temperature", 0.1, 1.2, 0.75, 0.05)
with st.sidebar.expander("XTTS options", expanded=False):
xtts_language = st.text_input("Language code", value="ar", help="e.g., ar, en, fr…")
xtts_gpt_cond_len = st.slider("GPT conditioning length", 1, 10, 3, 1)
xtts_use_synthesize = st.checkbox("Use synthesize() if available", value=True)
if LOG_FILE.exists():
with open(LOG_FILE, "rb") as log_file:
st.sidebar.download_button(
label="Download app logs",
data=log_file,
file_name=LOG_FILE.name,
mime="text/plain",
)
# Backend selection & device info
supports_local = model_meta["engine"] in {"vits", "speecht5", "kokoro"}
hosted_available = model_meta.get("hosted", False)
backend_options = []
if supports_local:
backend_options.append("Local (Transformers)")
if hosted_available:
backend_options.append("Hosted (HF Inference)")
if not backend_options:
backend_options = ["Local (Transformers)"]
backend = st.sidebar.radio("Inference backend", backend_options, index=0)
kokoro_lang = model_meta.get("lang_code", "a")
kokoro_voice = model_meta.get("default_voice", "af_heart")
if model_meta["engine"] == "kokoro":
kokoro_lang = st.sidebar.text_input(
"Kokoro language code",
value=kokoro_lang,
help="Keep 'a' for Arabic. Refer to Kokoro docs for other codes.",
)
kokoro_voice = st.sidebar.text_input(
"Kokoro voice ID",
value=kokoro_voice,
help="Default voice is af_heart. See Kokoro repo for available voices.",
)
device = "cuda" if torch.cuda.is_available() else "cpu"
st.sidebar.markdown(f"**Device:** `{device}`")
# Voice settings (sample rate used for hosted fallback)
sample_rate = st.sidebar.number_input("Sample rate", value=16000, min_value=8000, max_value=48000, step=1000)
@st.cache_resource(show_spinner=False)
def load_local_model(repo_id: str, cache_dir: str):
try:
model = VitsModel.from_pretrained(repo_id, cache_dir=cache_dir)
tokenizer = AutoTokenizer.from_pretrained(repo_id, cache_dir=cache_dir)
return model, tokenizer
except OSError as missing_weights:
raise RuntimeError(
f"Model {repo_id} does not ship a supported checkpoint (pytorch_model.bin/model.safetensors)."
" Download the raw .pth manually and convert it to HF format, or pick another model."
) from missing_weights
@st.cache_resource(show_spinner=False)
def load_speecht5_bundle(repo_id: str, cache_dir: str):
try:
processor = SpeechT5Processor.from_pretrained(repo_id, cache_dir=cache_dir)
model = SpeechT5ForTextToSpeech.from_pretrained(repo_id, cache_dir=cache_dir)
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan", cache_dir=cache_dir)
speaker_embedding = _load_speecht5_speaker_embedding(cache_dir)
return processor, model, vocoder, speaker_embedding
except ImportError as imp_err:
raise RuntimeError(
"SpeechT5 needs optional deps (sentencepiece). Run `pip install sentencepiece` then restart the app."
) from imp_err
@st.cache_resource(show_spinner=False)
def load_kokoro_pipeline(lang_code: str):
return KPipeline(lang_code=lang_code)
def _load_speecht5_speaker_embedding(cache_dir: str) -> torch.Tensor:
"""Load a speaker embedding for SpeechT5 without using dataset scripts.
If remote assets are unavailable, return a neutral 512-dim embedding.
"""
# Try a known xvector file if available (no trust_remote_code)
try:
xvector_path = hf_hub_download(
repo_id="Matthijs/cmu-arctic-xvectors",
filename="validation/000000.xvector.npy",
repo_type="dataset",
cache_dir=cache_dir,
)
arr = np.load(xvector_path)
vector = torch.from_numpy(arr)
if vector.ndim == 1:
vector = vector.unsqueeze(0)
return vector
except Exception as err:
logger.warning("Speaker xvector file not accessible (%s); using neutral embedding.", err)
# Fallback: neutral speaker embedding (512 dims expected by SpeechT5)
neutral = torch.zeros((1, 512), dtype=torch.float32)
return neutral
@st.cache_resource(show_spinner=False)
def load_xtts_model(config_path: str, checkpoint_dir: str, vocab_path: str | None, device: str):
try:
from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.models.xtts import Xtts
except ImportError as e:
raise RuntimeError(
"XTTS requires the Coqui TTS library. Install via `pip install TTS` and restart the app."
) from e
cfg_path = Path(config_path)
voc_path = Path(vocab_path) if vocab_path else None
ckpt_dir = Path(checkpoint_dir)
if not cfg_path.exists():
raise RuntimeError(f"XTTS config.json not found at {cfg_path}")
if voc_path is not None and not voc_path.exists():
raise RuntimeError(f"XTTS vocab.json not found at {voc_path}")
if not ckpt_dir.exists():
raise RuntimeError(f"XTTS checkpoint directory not found at {ckpt_dir}")
config = XttsConfig()
config.load_json(str(cfg_path))
model = Xtts.init_from_config(config)
if voc_path is not None:
model.load_checkpoint(
config,
checkpoint_dir=str(ckpt_dir),
eval=True,
vocab_path=str(voc_path),
)
else:
model.load_checkpoint(
config,
checkpoint_dir=str(ckpt_dir),
eval=True,
)
if device == "cuda":
model.cuda()
model.eval()
return model
def ensure_valid_tokens(token_batch: dict):
seq_len = token_batch["input_ids"].shape[-1]
if seq_len < 2:
raise ValueError(
"النص المدخل لم ينتج أي رموز صالحة لهذا النموذج. أضف حروفًا عربية واضحة أو جملة أطول ثم أعد المحاولة."
)
# Main input area
st.subheader("Input Arabic Text")
text = st.text_area(
"Enter Arabic text",
placeholder="اكتب النص العربي هنا لتحويله إلى كلام",
height=150,
)
# Generate button
generate = st.button("🔊 Generate Speech")
# Output area
audio_placeholder = st.empty()
status_placeholder = st.empty()
if generate:
if not text.strip():
st.warning("من فضلك أدخل نصًا عربيًا أولاً.")
else:
status_placeholder.info("Running inference… This may take a few seconds.")
success = False
should_run_hosted = backend.startswith("Hosted") and hosted_available
if backend.startswith("Local") and supports_local:
cache_dir = Path(download_dir).expanduser()
cache_dir.mkdir(parents=True, exist_ok=True)
try:
if model_meta["engine"] == "vits":
model, tokenizer = load_local_model(model_id, str(cache_dir))
model.to(device)
model.eval()
inputs = tokenizer(text, return_tensors="pt")
ensure_valid_tokens(inputs)
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.inference_mode():
outputs = model(**inputs)
waveform = outputs.waveform.squeeze(0).cpu().numpy()
sr = getattr(model.config, "sampling_rate", sample_rate)
elif model_meta["engine"] == "speecht5":
processor, model, vocoder, speaker = load_speecht5_bundle(model_id, str(cache_dir))
model.to(device)
vocoder.to(device)
inputs = processor(text=text, return_tensors="pt")
ensure_valid_tokens(inputs)
input_ids = inputs["input_ids"].to(device)
speaker_embedding = speaker.to(device)
with torch.inference_mode():
speech = model.generate_speech(input_ids, speaker_embedding, vocoder=vocoder)
waveform = speech.cpu().numpy()
sr = getattr(model.config, "sampling_rate", 16000)
elif model_meta["engine"] == "kokoro":
pipeline = load_kokoro_pipeline(kokoro_lang)
generator = pipeline(text, voice=kokoro_voice)
audio_chunks = []
for _, _, audio in generator:
if audio is not None:
audio_chunks.append(audio)
if not audio_chunks:
raise RuntimeError("Kokoro pipeline returned no audio. Try a different voice or text.")
waveform = np.concatenate(audio_chunks).astype(np.float32)
sr = model_meta.get("sample_rate", 24000)
elif model_meta["engine"] == "xtts":
model = load_xtts_model(
str(Path(xtts_config_path).expanduser()),
str(Path(xtts_checkpoint_dir).expanduser()),
str(Path(xtts_vocab_path).expanduser()),
device,
)
spk_path = Path(xtts_speaker_wav).expanduser()
if not spk_path.exists():
raise RuntimeError(f"Speaker WAV not found at {spk_path}")
try:
if 'xtts_use_synthesize' in locals() and xtts_use_synthesize and hasattr(model, 'synthesize'):
out = model.synthesize(
text,
model.config,
speaker_wav=str(spk_path),
gpt_cond_len=int(xtts_gpt_cond_len),
language=xtts_language,
temperature=float(xtts_temperature),
)
wav = out.get("wav") if isinstance(out, dict) else out
waveform = np.asarray(wav, dtype=np.float32)
sr = 24000
else:
gpt_cond_latent, speaker_embedding = model.get_conditioning_latents(audio_path=[str(spk_path)])
out = model.inference(
text,
xtts_language,
gpt_cond_latent,
speaker_embedding,
temperature=float(xtts_temperature),
)
waveform = np.asarray(out["wav"], dtype=np.float32)
sr = 24000
except Exception as xtts_err:
raise RuntimeError(
f"XTTS inference failed. Ensure config, vocab, checkpoint (.pth) and speaker WAV are correct. Error: {xtts_err}"
) from xtts_err
else:
raise RuntimeError(f"Engine {model_meta['engine']} not supported locally")
wav_io = io.BytesIO()
if model_meta["engine"] == "kokoro":
sf.write(wav_io, waveform, int(sr), format="WAV", closefd=False)
else:
wav_write(wav_io, int(sr), waveform)
wav_io.seek(0)
audio_placeholder.audio(wav_io, format="audio/wav")
status_placeholder.success("Done! Press play above to listen.")
logger.info("Local inference succeeded for %s", model_id)
success = True
except ValueError as token_err:
status_placeholder.error(str(token_err))
logger.warning("Tokenization failed for %s: %s", model_id, token_err)
st.stop()
except Exception as local_err:
logger.exception("Local inference failed for %s", model_id)
if hosted_available:
should_run_hosted = True
status_placeholder.warning(
f"Local inference فشل ({local_err}). سيتم استخدام واجهة Hugging Face المستضافة تلقائيًا عند توفرها."
)
else:
status_placeholder.error(f"Local inference failed: {local_err}. راجع السجلات أو جرّب نموذجًا آخر.")
if not success and should_run_hosted and hosted_available:
try:
client = InferenceClient(model=model_id, token=hf_token or None)
audio_bytes = client.text_to_speech(text)
audio_buf = io.BytesIO(audio_bytes)
audio_placeholder.audio(audio_buf, format="audio/wav", sample_rate=sample_rate)
status_placeholder.success("Done! Press play above to listen.")
logger.info("Hosted inference succeeded for %s", model_id)
success = True
except HfHubHTTPError as hub_error:
error_msg = f"Hugging Face inference error: {hub_error}"
status_placeholder.error(error_msg)
logger.exception("HF inference failed for %s", model_id)
except Exception as err:
status_placeholder.error("Inference failed. Check app.log for details.")
logger.exception("Inference failed for %s", model_id)
st.markdown("---")
st.markdown(
"Notes:\n"
"- For best performance, run on a GPU (CUDA) so MMS/VITS/SpeechT5 models synthesize faster.\n"
"- MMS + community VITS checkpoints cover different Arabic dialects; try several to match your accent.\n"
"- SpeechT5 downloads an additional HiFi-GAN vocoder and speaker embedding on first use.\n"
"- Kokoro requires the system package `espeak-ng` for phonemization.\n"
"- Hosted Hugging Face inference is disabled for these repos, so keep local copies handy.\n"
"- Use the sidebar to download model weights and export app logs if you need support.\n"
) |