File size: 20,014 Bytes
b612ad2
4f7f36a
 
b612ad2
60c1f8a
 
 
 
 
 
 
 
 
 
 
 
 
a3cf4a0
4f7f36a
b612ad2
60c1f8a
b612ad2
60c1f8a
 
 
 
 
 
a3cf4a0
 
60c1f8a
 
 
 
 
 
 
 
 
 
a3cf4a0
 
 
60c1f8a
a3cf4a0
 
 
 
 
 
 
60c1f8a
b612ad2
 
4f7f36a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b612ad2
 
60c1f8a
b612ad2
 
 
 
60c1f8a
 
b612ad2
 
 
60c1f8a
b612ad2
 
 
 
 
 
 
 
4f7f36a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3cf4a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f7f36a
 
 
 
 
 
 
 
 
60c1f8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e2b73d
b612ad2
60c1f8a
 
 
a3cf4a0
 
 
 
 
 
 
 
 
60c1f8a
 
 
 
a3cf4a0
 
 
 
 
 
 
 
 
 
60c1f8a
 
 
 
 
 
 
a3cf4a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60c1f8a
 
 
 
 
 
 
b612ad2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60c1f8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3cf4a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60c1f8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3cf4a0
 
 
60c1f8a
a3cf4a0
60c1f8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b612ad2
 
 
 
60c1f8a
 
 
 
 
 
b612ad2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
import io
from pathlib import Path
import logging
import streamlit as st
import torch
import numpy as np
import soundfile as sf
from kokoro import KPipeline
from transformers import (
    VitsModel,
    AutoTokenizer,
    SpeechT5Processor,
    SpeechT5ForTextToSpeech,
    SpeechT5HifiGan,
)
from datasets import load_dataset
from scipy.io.wavfile import write as wav_write
from huggingface_hub import InferenceClient, snapshot_download, hf_hub_download
from huggingface_hub.utils import HfHubHTTPError

# Pre-selected Arabic-focused TTS models on Hugging Face (verified public repos)
ARABIC_TTS_MODELS = {
    "MMS (MSA) — facebook/mms-tts-ara": {
        "repo_id": "facebook/mms-tts-ara",
        "engine": "vits",
        "hosted": False,
        "description": "Official MMS checkpoint for Modern Standard Arabic",
    },
    "VITS (Community) — wasmdashai/vits-ar-sa-A": {
        "repo_id": "wasmdashai/vits-ar-sa-A",
        "engine": "vits",
        "hosted": False,
        "description": "Community-trained VITS voice focused on Arabic",
    },
    "SpeechT5 (CLAra) — MBZUAI/speecht5_tts_clartts_ar": {
        "repo_id": "MBZUAI/speecht5_tts_clartts_ar",
        "engine": "speecht5",
        "hosted": False,
        "description": "MBZUAI SpeechT5 fine-tune for Classical Arabic",
    },
    "Saudi TTS — AhmedEladl/saudi-tts": {
        "repo_id": "AhmedEladl/saudi-tts",
        "engine": "xtts",
        "hosted": False,
        "description": "Coqui XTTS-style Saudi Arabic model (.pth checkpoint). Provide local paths below.",
    },
    "XTTS v2 — coqui/XTTS-v2": {
        "repo_id": "coqui/XTTS-v2",
        "engine": "xtts",
        "hosted": False,
        "description": "Official Coqui XTTS v2. Use local snapshot and speaker WAV; supports synthesize().",
    },
}

LOG_FILE = Path("app.log")
DEFAULT_DOWNLOAD_DIR = Path("models_cache")


def _init_logger() -> logging.Logger:
    """Configure logging once per Streamlit session."""
    if not st.session_state.get("_logger_configured"):
        LOG_FILE.parent.mkdir(parents=True, exist_ok=True)
        logging.basicConfig(
            level=logging.INFO,
            format="%(asctime)s | %(levelname)s | %(message)s",
            handlers=[
                logging.FileHandler(LOG_FILE, encoding="utf-8"),
                logging.StreamHandler(),
            ],
        )
        st.session_state["_logger_configured"] = True
    return logging.getLogger("arabic_tts_app")


logger = _init_logger()

st.set_page_config(page_title="Arabic TTS (Hugging Face)", page_icon="🗣️", layout="centered")
st.title("🗣️ Arabic Text-to-Speech — Hugging Face + Streamlit")
st.caption("Generate Arabic speech from text using four open-source Arabic-focused models (MMS, community VITS, and SpeechT5).")

# Sidebar configuration
st.sidebar.header("Model & Settings")
model_label = st.sidebar.selectbox("Choose a TTS model", list(ARABIC_TTS_MODELS.keys()))
model_meta = ARABIC_TTS_MODELS[model_label]
model_id = model_meta["repo_id"]

st.sidebar.markdown(
    f"Selected: `{model_id}`\n\n"
    f"{model_meta['description']}"
)

hf_token = st.sidebar.text_input(
    "Optional: Hugging Face access token",
    type="password",
    help="Provide a token if you hit rate limits or want private usage."
)

# Model download controls
with st.sidebar.expander("Model assets", expanded=False):
    download_dir = st.text_input(
        "Local download directory",
        value=str(DEFAULT_DOWNLOAD_DIR),
        help="Where downloaded model files will be stored (relative or absolute path).",
    )
    download_now = st.button("⬇️ Download selected model", key="download_model_button")
    if download_now:
        try:
            status = st.sidebar.info("Downloading… please wait.")
            local_path = snapshot_download(
                repo_id=model_id,
                local_dir=download_dir,
                token=hf_token or None,
            )
            status.empty()
            st.sidebar.success(f"Model cached at {local_path}")
            logger.info("Downloaded model %s to %s", model_id, local_path)
        except HfHubHTTPError as hub_err:
            st.sidebar.error(f"Hugging Face download error: {hub_err}")
            logger.exception("HF download failed for %s", model_id)
        except Exception as dl_err:
            st.sidebar.error(f"Download failed: {dl_err}")
            logger.exception("Download failed for %s", model_id)

# Remember last chosen download dir for defaults
try:
    st.session_state["_last_download_dir"] = download_dir
except Exception:
    pass

# XTTS-specific path inputs now that download_dir is defined
xtts_config_path = None
xtts_vocab_path = None
xtts_checkpoint_dir = None
xtts_speaker_wav = None
xtts_temperature = 0.75
if model_meta["engine"] == "xtts":
    with st.sidebar.expander("XTTS local paths", expanded=True):
        base = Path(st.session_state.get("_last_download_dir", DEFAULT_DOWNLOAD_DIR)).expanduser()
        xtts_config_path = st.text_input(
            "config.json path",
            value=str(base / "config.json"),
            help="Absolute or relative path to XTTS config.json",
        )
        xtts_vocab_path = st.text_input(
            "vocab.json path",
            value=str(base / "vocab.json"),
            help="Optional: path to vocab.json (if required by your checkpoint)",
        )
        xtts_checkpoint_dir = st.text_input(
            "Checkpoint directory",
            value=str(base),
            help="Directory containing the model .pth checkpoint",
        )
        xtts_speaker_wav = st.text_input(
            "Speaker WAV path",
            value=str(base / "speaker.wav"),
            help="Path to a short reference WAV for voice cloning",
        )
        xtts_temperature = st.slider("XTTS temperature", 0.1, 1.2, 0.75, 0.05)
    with st.sidebar.expander("XTTS options", expanded=False):
        xtts_language = st.text_input("Language code", value="ar", help="e.g., ar, en, fr…")
        xtts_gpt_cond_len = st.slider("GPT conditioning length", 1, 10, 3, 1)
        xtts_use_synthesize = st.checkbox("Use synthesize() if available", value=True)

if LOG_FILE.exists():
    with open(LOG_FILE, "rb") as log_file:
        st.sidebar.download_button(
            label="Download app logs",
            data=log_file,
            file_name=LOG_FILE.name,
            mime="text/plain",
        )

# Backend selection & device info
supports_local = model_meta["engine"] in {"vits", "speecht5", "kokoro"}
hosted_available = model_meta.get("hosted", False)
backend_options = []
if supports_local:
    backend_options.append("Local (Transformers)")
if hosted_available:
    backend_options.append("Hosted (HF Inference)")

if not backend_options:
    backend_options = ["Local (Transformers)"]

backend = st.sidebar.radio("Inference backend", backend_options, index=0)

kokoro_lang = model_meta.get("lang_code", "a")
kokoro_voice = model_meta.get("default_voice", "af_heart")
if model_meta["engine"] == "kokoro":
    kokoro_lang = st.sidebar.text_input(
        "Kokoro language code",
        value=kokoro_lang,
        help="Keep 'a' for Arabic. Refer to Kokoro docs for other codes.",
    )
    kokoro_voice = st.sidebar.text_input(
        "Kokoro voice ID",
        value=kokoro_voice,
        help="Default voice is af_heart. See Kokoro repo for available voices.",
    )

device = "cuda" if torch.cuda.is_available() else "cpu"
st.sidebar.markdown(f"**Device:** `{device}`")

# Voice settings (sample rate used for hosted fallback)
sample_rate = st.sidebar.number_input("Sample rate", value=16000, min_value=8000, max_value=48000, step=1000)


@st.cache_resource(show_spinner=False)
def load_local_model(repo_id: str, cache_dir: str):
    try:
        model = VitsModel.from_pretrained(repo_id, cache_dir=cache_dir)
        tokenizer = AutoTokenizer.from_pretrained(repo_id, cache_dir=cache_dir)
        return model, tokenizer
    except OSError as missing_weights:
        raise RuntimeError(
            f"Model {repo_id} does not ship a supported checkpoint (pytorch_model.bin/model.safetensors)."
            " Download the raw .pth manually and convert it to HF format, or pick another model."
        ) from missing_weights


@st.cache_resource(show_spinner=False)
def load_speecht5_bundle(repo_id: str, cache_dir: str):
    try:
        processor = SpeechT5Processor.from_pretrained(repo_id, cache_dir=cache_dir)
        model = SpeechT5ForTextToSpeech.from_pretrained(repo_id, cache_dir=cache_dir)
        vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan", cache_dir=cache_dir)
        speaker_embedding = _load_speecht5_speaker_embedding(cache_dir)
        return processor, model, vocoder, speaker_embedding
    except ImportError as imp_err:
        raise RuntimeError(
            "SpeechT5 needs optional deps (sentencepiece). Run `pip install sentencepiece` then restart the app."
        ) from imp_err


@st.cache_resource(show_spinner=False)
def load_kokoro_pipeline(lang_code: str):
    return KPipeline(lang_code=lang_code)


def _load_speecht5_speaker_embedding(cache_dir: str) -> torch.Tensor:
    """Load a speaker embedding for SpeechT5 without using dataset scripts.

    If remote assets are unavailable, return a neutral 512-dim embedding.
    """
    # Try a known xvector file if available (no trust_remote_code)
    try:
        xvector_path = hf_hub_download(
            repo_id="Matthijs/cmu-arctic-xvectors",
            filename="validation/000000.xvector.npy",
            repo_type="dataset",
            cache_dir=cache_dir,
        )
        arr = np.load(xvector_path)
        vector = torch.from_numpy(arr)
        if vector.ndim == 1:
            vector = vector.unsqueeze(0)
        return vector
    except Exception as err:
        logger.warning("Speaker xvector file not accessible (%s); using neutral embedding.", err)

    # Fallback: neutral speaker embedding (512 dims expected by SpeechT5)
    neutral = torch.zeros((1, 512), dtype=torch.float32)
    return neutral


@st.cache_resource(show_spinner=False)
def load_xtts_model(config_path: str, checkpoint_dir: str, vocab_path: str | None, device: str):
    try:
        from TTS.tts.configs.xtts_config import XttsConfig
        from TTS.tts.models.xtts import Xtts
    except ImportError as e:
        raise RuntimeError(
            "XTTS requires the Coqui TTS library. Install via `pip install TTS` and restart the app."
        ) from e

    cfg_path = Path(config_path)
    voc_path = Path(vocab_path) if vocab_path else None
    ckpt_dir = Path(checkpoint_dir)
    if not cfg_path.exists():
        raise RuntimeError(f"XTTS config.json not found at {cfg_path}")
    if voc_path is not None and not voc_path.exists():
        raise RuntimeError(f"XTTS vocab.json not found at {voc_path}")
    if not ckpt_dir.exists():
        raise RuntimeError(f"XTTS checkpoint directory not found at {ckpt_dir}")

    config = XttsConfig()
    config.load_json(str(cfg_path))
    model = Xtts.init_from_config(config)
    if voc_path is not None:
        model.load_checkpoint(
            config,
            checkpoint_dir=str(ckpt_dir),
            eval=True,
            vocab_path=str(voc_path),
        )
    else:
        model.load_checkpoint(
            config,
            checkpoint_dir=str(ckpt_dir),
            eval=True,
        )
    if device == "cuda":
        model.cuda()
    model.eval()
    return model


def ensure_valid_tokens(token_batch: dict):
    seq_len = token_batch["input_ids"].shape[-1]
    if seq_len < 2:
        raise ValueError(
            "النص المدخل لم ينتج أي رموز صالحة لهذا النموذج. أضف حروفًا عربية واضحة أو جملة أطول ثم أعد المحاولة."
        )

# Main input area
st.subheader("Input Arabic Text")
text = st.text_area(
    "Enter Arabic text",
    placeholder="اكتب النص العربي هنا لتحويله إلى كلام",
    height=150,
)

# Generate button
generate = st.button("🔊 Generate Speech")

# Output area
audio_placeholder = st.empty()
status_placeholder = st.empty()

if generate:
    if not text.strip():
        st.warning("من فضلك أدخل نصًا عربيًا أولاً.")
    else:
        status_placeholder.info("Running inference… This may take a few seconds.")
        success = False
        should_run_hosted = backend.startswith("Hosted") and hosted_available

        if backend.startswith("Local") and supports_local:
            cache_dir = Path(download_dir).expanduser()
            cache_dir.mkdir(parents=True, exist_ok=True)
            try:
                if model_meta["engine"] == "vits":
                    model, tokenizer = load_local_model(model_id, str(cache_dir))
                    model.to(device)
                    model.eval()
                    inputs = tokenizer(text, return_tensors="pt")
                    ensure_valid_tokens(inputs)
                    inputs = {k: v.to(device) for k, v in inputs.items()}
                    with torch.inference_mode():
                        outputs = model(**inputs)
                        waveform = outputs.waveform.squeeze(0).cpu().numpy()
                    sr = getattr(model.config, "sampling_rate", sample_rate)
                elif model_meta["engine"] == "speecht5":
                    processor, model, vocoder, speaker = load_speecht5_bundle(model_id, str(cache_dir))
                    model.to(device)
                    vocoder.to(device)
                    inputs = processor(text=text, return_tensors="pt")
                    ensure_valid_tokens(inputs)
                    input_ids = inputs["input_ids"].to(device)
                    speaker_embedding = speaker.to(device)
                    with torch.inference_mode():
                        speech = model.generate_speech(input_ids, speaker_embedding, vocoder=vocoder)
                    waveform = speech.cpu().numpy()
                    sr = getattr(model.config, "sampling_rate", 16000)
                elif model_meta["engine"] == "kokoro":
                    pipeline = load_kokoro_pipeline(kokoro_lang)
                    generator = pipeline(text, voice=kokoro_voice)
                    audio_chunks = []
                    for _, _, audio in generator:
                        if audio is not None:
                            audio_chunks.append(audio)
                    if not audio_chunks:
                        raise RuntimeError("Kokoro pipeline returned no audio. Try a different voice or text.")
                    waveform = np.concatenate(audio_chunks).astype(np.float32)
                    sr = model_meta.get("sample_rate", 24000)
                elif model_meta["engine"] == "xtts":
                    model = load_xtts_model(
                        str(Path(xtts_config_path).expanduser()),
                        str(Path(xtts_checkpoint_dir).expanduser()),
                        str(Path(xtts_vocab_path).expanduser()),
                        device,
                    )
                    spk_path = Path(xtts_speaker_wav).expanduser()
                    if not spk_path.exists():
                        raise RuntimeError(f"Speaker WAV not found at {spk_path}")
                    try:
                        if 'xtts_use_synthesize' in locals() and xtts_use_synthesize and hasattr(model, 'synthesize'):
                            out = model.synthesize(
                                text,
                                model.config,
                                speaker_wav=str(spk_path),
                                gpt_cond_len=int(xtts_gpt_cond_len),
                                language=xtts_language,
                                temperature=float(xtts_temperature),
                            )
                            wav = out.get("wav") if isinstance(out, dict) else out
                            waveform = np.asarray(wav, dtype=np.float32)
                            sr = 24000
                        else:
                            gpt_cond_latent, speaker_embedding = model.get_conditioning_latents(audio_path=[str(spk_path)])
                            out = model.inference(
                                text,
                                xtts_language,
                                gpt_cond_latent,
                                speaker_embedding,
                                temperature=float(xtts_temperature),
                            )
                            waveform = np.asarray(out["wav"], dtype=np.float32)
                            sr = 24000
                    except Exception as xtts_err:
                        raise RuntimeError(
                            f"XTTS inference failed. Ensure config, vocab, checkpoint (.pth) and speaker WAV are correct. Error: {xtts_err}"
                        ) from xtts_err
                else:
                    raise RuntimeError(f"Engine {model_meta['engine']} not supported locally")

                wav_io = io.BytesIO()
                if model_meta["engine"] == "kokoro":
                    sf.write(wav_io, waveform, int(sr), format="WAV", closefd=False)
                else:
                    wav_write(wav_io, int(sr), waveform)
                wav_io.seek(0)
                audio_placeholder.audio(wav_io, format="audio/wav")
                status_placeholder.success("Done! Press play above to listen.")
                logger.info("Local inference succeeded for %s", model_id)
                success = True
            except ValueError as token_err:
                status_placeholder.error(str(token_err))
                logger.warning("Tokenization failed for %s: %s", model_id, token_err)
                st.stop()
            except Exception as local_err:
                logger.exception("Local inference failed for %s", model_id)
                if hosted_available:
                    should_run_hosted = True
                    status_placeholder.warning(
                        f"Local inference فشل ({local_err}). سيتم استخدام واجهة Hugging Face المستضافة تلقائيًا عند توفرها."
                    )
                else:
                    status_placeholder.error(f"Local inference failed: {local_err}. راجع السجلات أو جرّب نموذجًا آخر.")

        if not success and should_run_hosted and hosted_available:
            try:
                client = InferenceClient(model=model_id, token=hf_token or None)
                audio_bytes = client.text_to_speech(text)
                audio_buf = io.BytesIO(audio_bytes)
                audio_placeholder.audio(audio_buf, format="audio/wav", sample_rate=sample_rate)
                status_placeholder.success("Done! Press play above to listen.")
                logger.info("Hosted inference succeeded for %s", model_id)
                success = True
            except HfHubHTTPError as hub_error:
                error_msg = f"Hugging Face inference error: {hub_error}"
                status_placeholder.error(error_msg)
                logger.exception("HF inference failed for %s", model_id)
            except Exception as err:
                status_placeholder.error("Inference failed. Check app.log for details.")
                logger.exception("Inference failed for %s", model_id)

st.markdown("---")
st.markdown(
    "Notes:\n"
    "- For best performance, run on a GPU (CUDA) so MMS/VITS/SpeechT5 models synthesize faster.\n"
    "- MMS + community VITS checkpoints cover different Arabic dialects; try several to match your accent.\n"
    "- SpeechT5 downloads an additional HiFi-GAN vocoder and speaker embedding on first use.\n"
    "- Kokoro requires the system package `espeak-ng` for phonemization.\n"
    "- Hosted Hugging Face inference is disabled for these repos, so keep local copies handy.\n"
    "- Use the sidebar to download model weights and export app logs if you need support.\n"
)