Spaces:
Running
Running
Commit
·
a3cf4a0
1
Parent(s):
60c1f8a
Update with new models
Browse files
app.py
CHANGED
|
@@ -15,7 +15,7 @@ from transformers import (
|
|
| 15 |
)
|
| 16 |
from datasets import load_dataset
|
| 17 |
from scipy.io.wavfile import write as wav_write
|
| 18 |
-
from huggingface_hub import InferenceClient, snapshot_download
|
| 19 |
from huggingface_hub.utils import HfHubHTTPError
|
| 20 |
|
| 21 |
# Pre-selected Arabic-focused TTS models on Hugging Face (verified public repos)
|
|
@@ -26,14 +26,8 @@ ARABIC_TTS_MODELS = {
|
|
| 26 |
"hosted": False,
|
| 27 |
"description": "Official MMS checkpoint for Modern Standard Arabic",
|
| 28 |
},
|
| 29 |
-
"
|
| 30 |
-
"repo_id": "
|
| 31 |
-
"engine": "vits",
|
| 32 |
-
"hosted": False,
|
| 33 |
-
"description": "MMS model for the Arabic (Arabela) locale",
|
| 34 |
-
},
|
| 35 |
-
"VITS (Community) — wasmdashai/vits-ar": {
|
| 36 |
-
"repo_id": "wasmdashai/vits-ar",
|
| 37 |
"engine": "vits",
|
| 38 |
"hosted": False,
|
| 39 |
"description": "Community-trained VITS voice focused on Arabic",
|
|
@@ -44,14 +38,17 @@ ARABIC_TTS_MODELS = {
|
|
| 44 |
"hosted": False,
|
| 45 |
"description": "MBZUAI SpeechT5 fine-tune for Classical Arabic",
|
| 46 |
},
|
| 47 |
-
"
|
| 48 |
-
"repo_id": "
|
| 49 |
-
"engine": "
|
| 50 |
"hosted": False,
|
| 51 |
-
"description": "
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
"
|
|
|
|
|
|
|
|
|
|
| 55 |
},
|
| 56 |
}
|
| 57 |
|
|
@@ -124,6 +121,47 @@ with st.sidebar.expander("Model assets", expanded=False):
|
|
| 124 |
st.sidebar.error(f"Download failed: {dl_err}")
|
| 125 |
logger.exception("Download failed for %s", model_id)
|
| 126 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
if LOG_FILE.exists():
|
| 128 |
with open(LOG_FILE, "rb") as log_file:
|
| 129 |
st.sidebar.download_button(
|
|
@@ -170,19 +208,29 @@ sample_rate = st.sidebar.number_input("Sample rate", value=16000, min_value=8000
|
|
| 170 |
|
| 171 |
@st.cache_resource(show_spinner=False)
|
| 172 |
def load_local_model(repo_id: str, cache_dir: str):
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
|
| 177 |
|
| 178 |
@st.cache_resource(show_spinner=False)
|
| 179 |
def load_speecht5_bundle(repo_id: str, cache_dir: str):
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
|
| 187 |
|
| 188 |
@st.cache_resource(show_spinner=False)
|
|
@@ -190,6 +238,74 @@ def load_kokoro_pipeline(lang_code: str):
|
|
| 190 |
return KPipeline(lang_code=lang_code)
|
| 191 |
|
| 192 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 193 |
def ensure_valid_tokens(token_batch: dict):
|
| 194 |
seq_len = token_batch["input_ids"].shape[-1]
|
| 195 |
if seq_len < 2:
|
|
@@ -258,6 +374,44 @@ if generate:
|
|
| 258 |
raise RuntimeError("Kokoro pipeline returned no audio. Try a different voice or text.")
|
| 259 |
waveform = np.concatenate(audio_chunks).astype(np.float32)
|
| 260 |
sr = model_meta.get("sample_rate", 24000)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 261 |
else:
|
| 262 |
raise RuntimeError(f"Engine {model_meta['engine']} not supported locally")
|
| 263 |
|
|
@@ -279,9 +433,11 @@ if generate:
|
|
| 279 |
logger.exception("Local inference failed for %s", model_id)
|
| 280 |
if hosted_available:
|
| 281 |
should_run_hosted = True
|
| 282 |
-
status_placeholder.warning(
|
|
|
|
|
|
|
| 283 |
else:
|
| 284 |
-
status_placeholder.error("Local inference failed. راجع السجلات أو جرّب نموذجًا آخر.")
|
| 285 |
|
| 286 |
if not success and should_run_hosted and hosted_available:
|
| 287 |
try:
|
|
|
|
| 15 |
)
|
| 16 |
from datasets import load_dataset
|
| 17 |
from scipy.io.wavfile import write as wav_write
|
| 18 |
+
from huggingface_hub import InferenceClient, snapshot_download, hf_hub_download
|
| 19 |
from huggingface_hub.utils import HfHubHTTPError
|
| 20 |
|
| 21 |
# Pre-selected Arabic-focused TTS models on Hugging Face (verified public repos)
|
|
|
|
| 26 |
"hosted": False,
|
| 27 |
"description": "Official MMS checkpoint for Modern Standard Arabic",
|
| 28 |
},
|
| 29 |
+
"VITS (Community) — wasmdashai/vits-ar-sa-A": {
|
| 30 |
+
"repo_id": "wasmdashai/vits-ar-sa-A",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
"engine": "vits",
|
| 32 |
"hosted": False,
|
| 33 |
"description": "Community-trained VITS voice focused on Arabic",
|
|
|
|
| 38 |
"hosted": False,
|
| 39 |
"description": "MBZUAI SpeechT5 fine-tune for Classical Arabic",
|
| 40 |
},
|
| 41 |
+
"Saudi TTS — AhmedEladl/saudi-tts": {
|
| 42 |
+
"repo_id": "AhmedEladl/saudi-tts",
|
| 43 |
+
"engine": "xtts",
|
| 44 |
"hosted": False,
|
| 45 |
+
"description": "Coqui XTTS-style Saudi Arabic model (.pth checkpoint). Provide local paths below.",
|
| 46 |
+
},
|
| 47 |
+
"XTTS v2 — coqui/XTTS-v2": {
|
| 48 |
+
"repo_id": "coqui/XTTS-v2",
|
| 49 |
+
"engine": "xtts",
|
| 50 |
+
"hosted": False,
|
| 51 |
+
"description": "Official Coqui XTTS v2. Use local snapshot and speaker WAV; supports synthesize().",
|
| 52 |
},
|
| 53 |
}
|
| 54 |
|
|
|
|
| 121 |
st.sidebar.error(f"Download failed: {dl_err}")
|
| 122 |
logger.exception("Download failed for %s", model_id)
|
| 123 |
|
| 124 |
+
# Remember last chosen download dir for defaults
|
| 125 |
+
try:
|
| 126 |
+
st.session_state["_last_download_dir"] = download_dir
|
| 127 |
+
except Exception:
|
| 128 |
+
pass
|
| 129 |
+
|
| 130 |
+
# XTTS-specific path inputs now that download_dir is defined
|
| 131 |
+
xtts_config_path = None
|
| 132 |
+
xtts_vocab_path = None
|
| 133 |
+
xtts_checkpoint_dir = None
|
| 134 |
+
xtts_speaker_wav = None
|
| 135 |
+
xtts_temperature = 0.75
|
| 136 |
+
if model_meta["engine"] == "xtts":
|
| 137 |
+
with st.sidebar.expander("XTTS local paths", expanded=True):
|
| 138 |
+
base = Path(st.session_state.get("_last_download_dir", DEFAULT_DOWNLOAD_DIR)).expanduser()
|
| 139 |
+
xtts_config_path = st.text_input(
|
| 140 |
+
"config.json path",
|
| 141 |
+
value=str(base / "config.json"),
|
| 142 |
+
help="Absolute or relative path to XTTS config.json",
|
| 143 |
+
)
|
| 144 |
+
xtts_vocab_path = st.text_input(
|
| 145 |
+
"vocab.json path",
|
| 146 |
+
value=str(base / "vocab.json"),
|
| 147 |
+
help="Optional: path to vocab.json (if required by your checkpoint)",
|
| 148 |
+
)
|
| 149 |
+
xtts_checkpoint_dir = st.text_input(
|
| 150 |
+
"Checkpoint directory",
|
| 151 |
+
value=str(base),
|
| 152 |
+
help="Directory containing the model .pth checkpoint",
|
| 153 |
+
)
|
| 154 |
+
xtts_speaker_wav = st.text_input(
|
| 155 |
+
"Speaker WAV path",
|
| 156 |
+
value=str(base / "speaker.wav"),
|
| 157 |
+
help="Path to a short reference WAV for voice cloning",
|
| 158 |
+
)
|
| 159 |
+
xtts_temperature = st.slider("XTTS temperature", 0.1, 1.2, 0.75, 0.05)
|
| 160 |
+
with st.sidebar.expander("XTTS options", expanded=False):
|
| 161 |
+
xtts_language = st.text_input("Language code", value="ar", help="e.g., ar, en, fr…")
|
| 162 |
+
xtts_gpt_cond_len = st.slider("GPT conditioning length", 1, 10, 3, 1)
|
| 163 |
+
xtts_use_synthesize = st.checkbox("Use synthesize() if available", value=True)
|
| 164 |
+
|
| 165 |
if LOG_FILE.exists():
|
| 166 |
with open(LOG_FILE, "rb") as log_file:
|
| 167 |
st.sidebar.download_button(
|
|
|
|
| 208 |
|
| 209 |
@st.cache_resource(show_spinner=False)
|
| 210 |
def load_local_model(repo_id: str, cache_dir: str):
|
| 211 |
+
try:
|
| 212 |
+
model = VitsModel.from_pretrained(repo_id, cache_dir=cache_dir)
|
| 213 |
+
tokenizer = AutoTokenizer.from_pretrained(repo_id, cache_dir=cache_dir)
|
| 214 |
+
return model, tokenizer
|
| 215 |
+
except OSError as missing_weights:
|
| 216 |
+
raise RuntimeError(
|
| 217 |
+
f"Model {repo_id} does not ship a supported checkpoint (pytorch_model.bin/model.safetensors)."
|
| 218 |
+
" Download the raw .pth manually and convert it to HF format, or pick another model."
|
| 219 |
+
) from missing_weights
|
| 220 |
|
| 221 |
|
| 222 |
@st.cache_resource(show_spinner=False)
|
| 223 |
def load_speecht5_bundle(repo_id: str, cache_dir: str):
|
| 224 |
+
try:
|
| 225 |
+
processor = SpeechT5Processor.from_pretrained(repo_id, cache_dir=cache_dir)
|
| 226 |
+
model = SpeechT5ForTextToSpeech.from_pretrained(repo_id, cache_dir=cache_dir)
|
| 227 |
+
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan", cache_dir=cache_dir)
|
| 228 |
+
speaker_embedding = _load_speecht5_speaker_embedding(cache_dir)
|
| 229 |
+
return processor, model, vocoder, speaker_embedding
|
| 230 |
+
except ImportError as imp_err:
|
| 231 |
+
raise RuntimeError(
|
| 232 |
+
"SpeechT5 needs optional deps (sentencepiece). Run `pip install sentencepiece` then restart the app."
|
| 233 |
+
) from imp_err
|
| 234 |
|
| 235 |
|
| 236 |
@st.cache_resource(show_spinner=False)
|
|
|
|
| 238 |
return KPipeline(lang_code=lang_code)
|
| 239 |
|
| 240 |
|
| 241 |
+
def _load_speecht5_speaker_embedding(cache_dir: str) -> torch.Tensor:
|
| 242 |
+
"""Load a speaker embedding for SpeechT5 without using dataset scripts.
|
| 243 |
+
|
| 244 |
+
If remote assets are unavailable, return a neutral 512-dim embedding.
|
| 245 |
+
"""
|
| 246 |
+
# Try a known xvector file if available (no trust_remote_code)
|
| 247 |
+
try:
|
| 248 |
+
xvector_path = hf_hub_download(
|
| 249 |
+
repo_id="Matthijs/cmu-arctic-xvectors",
|
| 250 |
+
filename="validation/000000.xvector.npy",
|
| 251 |
+
repo_type="dataset",
|
| 252 |
+
cache_dir=cache_dir,
|
| 253 |
+
)
|
| 254 |
+
arr = np.load(xvector_path)
|
| 255 |
+
vector = torch.from_numpy(arr)
|
| 256 |
+
if vector.ndim == 1:
|
| 257 |
+
vector = vector.unsqueeze(0)
|
| 258 |
+
return vector
|
| 259 |
+
except Exception as err:
|
| 260 |
+
logger.warning("Speaker xvector file not accessible (%s); using neutral embedding.", err)
|
| 261 |
+
|
| 262 |
+
# Fallback: neutral speaker embedding (512 dims expected by SpeechT5)
|
| 263 |
+
neutral = torch.zeros((1, 512), dtype=torch.float32)
|
| 264 |
+
return neutral
|
| 265 |
+
|
| 266 |
+
|
| 267 |
+
@st.cache_resource(show_spinner=False)
|
| 268 |
+
def load_xtts_model(config_path: str, checkpoint_dir: str, vocab_path: str | None, device: str):
|
| 269 |
+
try:
|
| 270 |
+
from TTS.tts.configs.xtts_config import XttsConfig
|
| 271 |
+
from TTS.tts.models.xtts import Xtts
|
| 272 |
+
except ImportError as e:
|
| 273 |
+
raise RuntimeError(
|
| 274 |
+
"XTTS requires the Coqui TTS library. Install via `pip install TTS` and restart the app."
|
| 275 |
+
) from e
|
| 276 |
+
|
| 277 |
+
cfg_path = Path(config_path)
|
| 278 |
+
voc_path = Path(vocab_path) if vocab_path else None
|
| 279 |
+
ckpt_dir = Path(checkpoint_dir)
|
| 280 |
+
if not cfg_path.exists():
|
| 281 |
+
raise RuntimeError(f"XTTS config.json not found at {cfg_path}")
|
| 282 |
+
if voc_path is not None and not voc_path.exists():
|
| 283 |
+
raise RuntimeError(f"XTTS vocab.json not found at {voc_path}")
|
| 284 |
+
if not ckpt_dir.exists():
|
| 285 |
+
raise RuntimeError(f"XTTS checkpoint directory not found at {ckpt_dir}")
|
| 286 |
+
|
| 287 |
+
config = XttsConfig()
|
| 288 |
+
config.load_json(str(cfg_path))
|
| 289 |
+
model = Xtts.init_from_config(config)
|
| 290 |
+
if voc_path is not None:
|
| 291 |
+
model.load_checkpoint(
|
| 292 |
+
config,
|
| 293 |
+
checkpoint_dir=str(ckpt_dir),
|
| 294 |
+
eval=True,
|
| 295 |
+
vocab_path=str(voc_path),
|
| 296 |
+
)
|
| 297 |
+
else:
|
| 298 |
+
model.load_checkpoint(
|
| 299 |
+
config,
|
| 300 |
+
checkpoint_dir=str(ckpt_dir),
|
| 301 |
+
eval=True,
|
| 302 |
+
)
|
| 303 |
+
if device == "cuda":
|
| 304 |
+
model.cuda()
|
| 305 |
+
model.eval()
|
| 306 |
+
return model
|
| 307 |
+
|
| 308 |
+
|
| 309 |
def ensure_valid_tokens(token_batch: dict):
|
| 310 |
seq_len = token_batch["input_ids"].shape[-1]
|
| 311 |
if seq_len < 2:
|
|
|
|
| 374 |
raise RuntimeError("Kokoro pipeline returned no audio. Try a different voice or text.")
|
| 375 |
waveform = np.concatenate(audio_chunks).astype(np.float32)
|
| 376 |
sr = model_meta.get("sample_rate", 24000)
|
| 377 |
+
elif model_meta["engine"] == "xtts":
|
| 378 |
+
model = load_xtts_model(
|
| 379 |
+
str(Path(xtts_config_path).expanduser()),
|
| 380 |
+
str(Path(xtts_checkpoint_dir).expanduser()),
|
| 381 |
+
str(Path(xtts_vocab_path).expanduser()),
|
| 382 |
+
device,
|
| 383 |
+
)
|
| 384 |
+
spk_path = Path(xtts_speaker_wav).expanduser()
|
| 385 |
+
if not spk_path.exists():
|
| 386 |
+
raise RuntimeError(f"Speaker WAV not found at {spk_path}")
|
| 387 |
+
try:
|
| 388 |
+
if 'xtts_use_synthesize' in locals() and xtts_use_synthesize and hasattr(model, 'synthesize'):
|
| 389 |
+
out = model.synthesize(
|
| 390 |
+
text,
|
| 391 |
+
model.config,
|
| 392 |
+
speaker_wav=str(spk_path),
|
| 393 |
+
gpt_cond_len=int(xtts_gpt_cond_len),
|
| 394 |
+
language=xtts_language,
|
| 395 |
+
temperature=float(xtts_temperature),
|
| 396 |
+
)
|
| 397 |
+
wav = out.get("wav") if isinstance(out, dict) else out
|
| 398 |
+
waveform = np.asarray(wav, dtype=np.float32)
|
| 399 |
+
sr = 24000
|
| 400 |
+
else:
|
| 401 |
+
gpt_cond_latent, speaker_embedding = model.get_conditioning_latents(audio_path=[str(spk_path)])
|
| 402 |
+
out = model.inference(
|
| 403 |
+
text,
|
| 404 |
+
xtts_language,
|
| 405 |
+
gpt_cond_latent,
|
| 406 |
+
speaker_embedding,
|
| 407 |
+
temperature=float(xtts_temperature),
|
| 408 |
+
)
|
| 409 |
+
waveform = np.asarray(out["wav"], dtype=np.float32)
|
| 410 |
+
sr = 24000
|
| 411 |
+
except Exception as xtts_err:
|
| 412 |
+
raise RuntimeError(
|
| 413 |
+
f"XTTS inference failed. Ensure config, vocab, checkpoint (.pth) and speaker WAV are correct. Error: {xtts_err}"
|
| 414 |
+
) from xtts_err
|
| 415 |
else:
|
| 416 |
raise RuntimeError(f"Engine {model_meta['engine']} not supported locally")
|
| 417 |
|
|
|
|
| 433 |
logger.exception("Local inference failed for %s", model_id)
|
| 434 |
if hosted_available:
|
| 435 |
should_run_hosted = True
|
| 436 |
+
status_placeholder.warning(
|
| 437 |
+
f"Local inference فشل ({local_err}). سيتم استخدام واجهة Hugging Face المستضافة تلقائيًا عند توفرها."
|
| 438 |
+
)
|
| 439 |
else:
|
| 440 |
+
status_placeholder.error(f"Local inference failed: {local_err}. راجع السجلات أو جرّب نموذجًا آخر.")
|
| 441 |
|
| 442 |
if not success and should_run_hosted and hosted_available:
|
| 443 |
try:
|