Spaces:
Sleeping
Sleeping
File size: 5,338 Bytes
d0ba755 299f87b d0ba755 c6f8f84 d0ba755 299f87b d0ba755 f90da5a d0ba755 c6f8f84 d0ba755 299f87b d0ba755 299f87b d0ba755 c6f8f84 299f87b b867ef7 d0ba755 c6f8f84 d0ba755 c6f8f84 d0ba755 a6c8097 d0ba755 a6c8097 d0ba755 a6c8097 d0ba755 a6c8097 d0ba755 c6f8f84 d0ba755 a6c8097 d0ba755 a6c8097 d0ba755 a6c8097 d0ba755 a6c8097 d0ba755 a6c8097 d0ba755 c6f8f84 f90da5a c6f8f84 d0ba755 f90da5a a6c8097 f90da5a a6c8097 f90da5a d0ba755 a6c8097 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
# app.py
# -------------------------------
# 1. 套件載入
# -------------------------------
import os, glob, requests
from langchain.docstore.document import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains import RetrievalQA
from langchain_huggingface import HuggingFaceEmbeddings, HuggingFaceEndpoint
from docx import Document as DocxDocument
import gradio as gr
from langchain_community.vectorstores import FAISS
# -------------------------------
# 2. 環境變數與資料路徑
# -------------------------------
TXT_FOLDER = "./out_texts"
DB_PATH = "./faiss_db"
os.makedirs(DB_PATH, exist_ok=True)
os.makedirs(TXT_FOLDER, exist_ok=True) # 避免沒有 txt 檔時錯誤
HF_TOKEN = os.environ.get("HUGGINGFACEHUB_API_TOKEN")
if not HF_TOKEN:
raise ValueError(
"請在 Hugging Face Space 的 Settings → Repository secrets 設定 HUGGINGFACEHUB_API_TOKEN"
)
# -------------------------------
# 3. 建立或載入向量資料庫
# -------------------------------
EMBEDDINGS_MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2"
embeddings_model = HuggingFaceEmbeddings(model_name=EMBEDDINGS_MODEL_NAME)
if os.path.exists(os.path.join(DB_PATH, "index.faiss")):
print("載入現有向量資料庫...")
db = FAISS.load_local(DB_PATH, embeddings_model, allow_dangerous_deserialization=True)
else:
print("沒有資料庫,開始建立新向量資料庫...")
txt_files = glob.glob(f"{TXT_FOLDER}/*.txt")
if not txt_files:
print("注意:TXT 資料夾中沒有任何文字檔,向量資料庫將為空。")
docs = []
for filepath in txt_files:
with open(filepath, "r", encoding="utf-8") as f:
docs.append(Document(page_content=f.read(), metadata={"source": os.path.basename(filepath)}))
splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
split_docs = splitter.split_documents(docs)
db = FAISS.from_documents(split_docs, embeddings_model)
db.save_local(DB_PATH)
retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": 5})
# -------------------------------
# 4. LLM 設定(Hugging Face Endpoint)
# -------------------------------
llm = HuggingFaceEndpoint(
repo_id="google/flan-t5-large",
task="text2text-generation",
huggingfacehub_api_token=HF_TOKEN,
temperature=0.7,
max_new_tokens=512,
)
qa_chain = RetrievalQA.from_chain_type(
llm=llm,
retriever=retriever,
return_source_documents=True
)
# -------------------------------
# 5. 查詢 API 剩餘額度
# -------------------------------
def get_hf_rate_limit():
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
try:
r = requests.get("https://huggingface.co/api/whoami", headers=headers)
r.raise_for_status()
data = r.json()
remaining = data.get("rate_limit", {}).get("remaining", "未知")
return f"本小時剩餘 API 次數:約 {remaining}"
except Exception:
return "無法取得 API 速率資訊"
# -------------------------------
# 6. 生成文章(加入進度顯示)
# -------------------------------
def generate_article_with_progress(query, segments=5):
import time
docx_file = "/tmp/generated_article.docx"
doc = DocxDocument()
doc.add_heading(query, level=1)
all_text = []
prompt = f"請依據下列主題生成段落:{query}\n\n每段約150-200字。"
rate_info = get_hf_rate_limit()
# 初始化回傳
yield gr.Textbox.update(value=f"{rate_info}\n\n開始生成文章...\n")
for i in range(int(segments)):
try:
result = qa_chain({"query": prompt})
paragraph = result.get("result", "").strip()
if not paragraph:
paragraph = "(本段生成失敗,請稍後再試。)"
except Exception as e:
paragraph = f"(本段生成失敗:{e})"
all_text.append(paragraph)
doc.add_paragraph(paragraph)
prompt = f"請接續上一段生成下一段:\n{paragraph}\n\n下一段:"
# 更新進度文字
current_text = "\n\n".join(all_text)
yield gr.Textbox.update(value=f"{rate_info}\n\n{current_text}\n\n正在生成第 {i+1} 段 / {segments} ...")
# 保存 DOCX
doc.save(docx_file)
full_text = "\n\n".join(all_text)
yield gr.Textbox.update(value=f"{rate_info}\n\n{full_text}"), docx_file
# -------------------------------
# 7. Gradio 介面(更新按鈕綁定 generator)
# -------------------------------
with gr.Blocks() as demo:
gr.Markdown("# 佛教經論 RAG 系統 (HF API)")
gr.Markdown("使用 Hugging Face Endpoint LLM + FAISS RAG,生成文章並提示 API 剩餘額度。")
query_input = gr.Textbox(lines=2, placeholder="請輸入文章主題", label="文章主題")
segments_input = gr.Slider(minimum=1, maximum=10, step=1, value=5, label="段落數")
output_text = gr.Textbox(label="生成文章 + API 剩餘次數")
output_file = gr.File(label="下載 DOCX")
btn = gr.Button("生成文章")
btn.click(generate_article_with_progress, [query_input, segments_input], [output_text, output_file])
# -------------------------------
# 8. 啟動 Gradio
# -------------------------------
if __name__ == "__main__":
demo.launch()
|