File size: 5,338 Bytes
d0ba755
 
 
 
 
 
 
 
299f87b
d0ba755
 
 
 
 
 
 
 
 
 
c6f8f84
d0ba755
 
 
299f87b
 
 
d0ba755
 
 
 
 
 
 
 
 
 
 
 
 
f90da5a
 
d0ba755
 
 
c6f8f84
d0ba755
 
 
 
 
 
 
 
299f87b
d0ba755
299f87b
d0ba755
c6f8f84
299f87b
b867ef7
 
d0ba755
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6f8f84
d0ba755
c6f8f84
d0ba755
 
 
a6c8097
d0ba755
a6c8097
 
d0ba755
 
 
 
 
 
a6c8097
d0ba755
a6c8097
 
 
d0ba755
 
 
c6f8f84
d0ba755
a6c8097
d0ba755
 
a6c8097
d0ba755
 
 
 
a6c8097
 
 
 
 
d0ba755
 
a6c8097
d0ba755
 
a6c8097
d0ba755
c6f8f84
 
 
f90da5a
c6f8f84
 
 
 
d0ba755
f90da5a
a6c8097
f90da5a
 
a6c8097
f90da5a
d0ba755
a6c8097
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# app.py
# -------------------------------
# 1. 套件載入
# -------------------------------
import os, glob, requests
from langchain.docstore.document import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains import RetrievalQA
from langchain_huggingface import HuggingFaceEmbeddings, HuggingFaceEndpoint
from docx import Document as DocxDocument
import gradio as gr
from langchain_community.vectorstores import FAISS

# -------------------------------
# 2. 環境變數與資料路徑
# -------------------------------
TXT_FOLDER = "./out_texts"
DB_PATH = "./faiss_db"
os.makedirs(DB_PATH, exist_ok=True)
os.makedirs(TXT_FOLDER, exist_ok=True)  # 避免沒有 txt 檔時錯誤

HF_TOKEN = os.environ.get("HUGGINGFACEHUB_API_TOKEN")
if not HF_TOKEN:
    raise ValueError(
        "請在 Hugging Face Space 的 Settings → Repository secrets 設定 HUGGINGFACEHUB_API_TOKEN"
    )

# -------------------------------
# 3. 建立或載入向量資料庫
# -------------------------------
EMBEDDINGS_MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2"
embeddings_model = HuggingFaceEmbeddings(model_name=EMBEDDINGS_MODEL_NAME)

if os.path.exists(os.path.join(DB_PATH, "index.faiss")):
    print("載入現有向量資料庫...")
    db = FAISS.load_local(DB_PATH, embeddings_model, allow_dangerous_deserialization=True)
else:
    print("沒有資料庫,開始建立新向量資料庫...")
    txt_files = glob.glob(f"{TXT_FOLDER}/*.txt")
    if not txt_files:
        print("注意:TXT 資料夾中沒有任何文字檔,向量資料庫將為空。")
    docs = []
    for filepath in txt_files:
        with open(filepath, "r", encoding="utf-8") as f:
            docs.append(Document(page_content=f.read(), metadata={"source": os.path.basename(filepath)}))
    splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
    split_docs = splitter.split_documents(docs)
    db = FAISS.from_documents(split_docs, embeddings_model)
    db.save_local(DB_PATH)

retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": 5})

# -------------------------------
# 4. LLM 設定(Hugging Face Endpoint)
# -------------------------------
llm = HuggingFaceEndpoint(
    repo_id="google/flan-t5-large",
    task="text2text-generation",
    huggingfacehub_api_token=HF_TOKEN,
    temperature=0.7,
    max_new_tokens=512,
)

qa_chain = RetrievalQA.from_chain_type(
    llm=llm,
    retriever=retriever,
    return_source_documents=True
)

# -------------------------------
# 5. 查詢 API 剩餘額度
# -------------------------------
def get_hf_rate_limit():
    headers = {"Authorization": f"Bearer {HF_TOKEN}"}
    try:
        r = requests.get("https://huggingface.co/api/whoami", headers=headers)
        r.raise_for_status()
        data = r.json()
        remaining = data.get("rate_limit", {}).get("remaining", "未知")
        return f"本小時剩餘 API 次數:約 {remaining}"
    except Exception:
        return "無法取得 API 速率資訊"

# -------------------------------
# 6. 生成文章(加入進度顯示)
# -------------------------------
def generate_article_with_progress(query, segments=5):
    import time
    docx_file = "/tmp/generated_article.docx"
    doc = DocxDocument()
    doc.add_heading(query, level=1)

    all_text = []
    prompt = f"請依據下列主題生成段落:{query}\n\n每段約150-200字。"
    rate_info = get_hf_rate_limit()

    # 初始化回傳
    yield gr.Textbox.update(value=f"{rate_info}\n\n開始生成文章...\n")
    
    for i in range(int(segments)):
        try:
            result = qa_chain({"query": prompt})
            paragraph = result.get("result", "").strip()
            if not paragraph:
                paragraph = "(本段生成失敗,請稍後再試。)"
        except Exception as e:
            paragraph = f"(本段生成失敗:{e})"
        
        all_text.append(paragraph)
        doc.add_paragraph(paragraph)
        prompt = f"請接續上一段生成下一段:\n{paragraph}\n\n下一段:"

        # 更新進度文字
        current_text = "\n\n".join(all_text)
        yield gr.Textbox.update(value=f"{rate_info}\n\n{current_text}\n\n正在生成第 {i+1} 段 / {segments} ...")
    
    # 保存 DOCX
    doc.save(docx_file)
    full_text = "\n\n".join(all_text)
    yield gr.Textbox.update(value=f"{rate_info}\n\n{full_text}"), docx_file

# -------------------------------
# 7. Gradio 介面(更新按鈕綁定 generator)
# -------------------------------
with gr.Blocks() as demo:
    gr.Markdown("# 佛教經論 RAG 系統 (HF API)")
    gr.Markdown("使用 Hugging Face Endpoint LLM + FAISS RAG,生成文章並提示 API 剩餘額度。")

    query_input = gr.Textbox(lines=2, placeholder="請輸入文章主題", label="文章主題")
    segments_input = gr.Slider(minimum=1, maximum=10, step=1, value=5, label="段落數")
    output_text = gr.Textbox(label="生成文章 + API 剩餘次數")
    output_file = gr.File(label="下載 DOCX")

    btn = gr.Button("生成文章")
    btn.click(generate_article_with_progress, [query_input, segments_input], [output_text, output_file])

# -------------------------------
# 8. 啟動 Gradio
# -------------------------------
if __name__ == "__main__":
    demo.launch()