CHUNYU0505 commited on
Commit
c6f8f84
·
verified ·
1 Parent(s): 7e13e14

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -23
app.py CHANGED
@@ -17,6 +17,7 @@ from langchain_community.vectorstores import FAISS
17
  TXT_FOLDER = "./out_texts"
18
  DB_PATH = "./faiss_db"
19
  os.makedirs(DB_PATH, exist_ok=True)
 
20
 
21
  HF_TOKEN = os.environ.get("HUGGINGFACEHUB_API_TOKEN")
22
  if not HF_TOKEN:
@@ -39,9 +40,7 @@ else:
39
  docs = []
40
  for filepath in txt_files:
41
  with open(filepath, "r", encoding="utf-8") as f:
42
- docs.append(
43
- Document(page_content=f.read(), metadata={"source": os.path.basename(filepath)})
44
- )
45
  splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
46
  split_docs = splitter.split_documents(docs)
47
  db = FAISS.from_documents(split_docs, embeddings_model)
@@ -54,7 +53,7 @@ retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": 5})
54
  # -------------------------------
55
  llm = HuggingFaceEndpoint(
56
  repo_id="google/flan-t5-large",
57
- task="text2text-generation", # 明確指定 task
58
  huggingfacehub_api_token=HF_TOKEN,
59
  model_kwargs={"temperature": 0.7, "max_new_tokens": 512},
60
  )
@@ -74,10 +73,9 @@ def get_hf_rate_limit():
74
  r = requests.get("https://huggingface.co/api/whoami", headers=headers)
75
  r.raise_for_status()
76
  data = r.json()
77
- used = data.get("rate_limit", {}).get("used", 0)
78
- remaining = 300 - used if used is not None else "未知"
79
  return f"本小時剩餘 API 次數:約 {remaining}"
80
- except:
81
  return "無法取得 API 速率資訊"
82
 
83
  # -------------------------------
@@ -94,7 +92,7 @@ def generate_article_with_rate(query, segments=5):
94
  for i in range(int(segments)):
95
  try:
96
  result = qa_chain({"query": prompt})
97
- paragraph = result["result"].strip()
98
  if not paragraph:
99
  paragraph = "(本段生成失敗,請嘗試減少段落或改用較小模型。)"
100
  except Exception as e:
@@ -105,26 +103,23 @@ def generate_article_with_rate(query, segments=5):
105
 
106
  doc.save(docx_file)
107
  full_text = "\n\n".join(all_text)
108
-
109
  rate_info = get_hf_rate_limit()
110
  return f"{rate_info}\n\n{full_text}", docx_file
111
 
112
  # -------------------------------
113
  # 7. Gradio 介面
114
  # -------------------------------
115
- iface = gr.Interface(
116
- fn=generate_article_with_rate,
117
- inputs=[
118
- gr.Textbox(lines=2, placeholder="請輸入文章主題", label="文章主題"),
119
- gr.Slider(minimum=1, maximum=10, step=1, value=5, label="段落數")
120
- ],
121
- outputs=[
122
- gr.Textbox(label="生成文章 + API 剩餘次數"),
123
- gr.File(label="下載 DOCX")
124
- ],
125
- title="佛教經論 RAG 系統 (HF API)",
126
- description="使用 Hugging Face Endpoint LLM + FAISS RAG,生成文章並提示 API 剩餘額度。"
127
- )
128
 
129
  if __name__ == "__main__":
130
- iface.launch()
 
17
  TXT_FOLDER = "./out_texts"
18
  DB_PATH = "./faiss_db"
19
  os.makedirs(DB_PATH, exist_ok=True)
20
+ os.makedirs(TXT_FOLDER, exist_ok=True) # 避免沒有 txt 檔時錯誤
21
 
22
  HF_TOKEN = os.environ.get("HUGGINGFACEHUB_API_TOKEN")
23
  if not HF_TOKEN:
 
40
  docs = []
41
  for filepath in txt_files:
42
  with open(filepath, "r", encoding="utf-8") as f:
43
+ docs.append(Document(page_content=f.read(), metadata={"source": os.path.basename(filepath)}))
 
 
44
  splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
45
  split_docs = splitter.split_documents(docs)
46
  db = FAISS.from_documents(split_docs, embeddings_model)
 
53
  # -------------------------------
54
  llm = HuggingFaceEndpoint(
55
  repo_id="google/flan-t5-large",
56
+ task="text2text-generation",
57
  huggingfacehub_api_token=HF_TOKEN,
58
  model_kwargs={"temperature": 0.7, "max_new_tokens": 512},
59
  )
 
73
  r = requests.get("https://huggingface.co/api/whoami", headers=headers)
74
  r.raise_for_status()
75
  data = r.json()
76
+ remaining = data.get("rate_limit", {}).get("remaining", "未知")
 
77
  return f"本小時剩餘 API 次數:約 {remaining}"
78
+ except Exception:
79
  return "無法取得 API 速率資訊"
80
 
81
  # -------------------------------
 
92
  for i in range(int(segments)):
93
  try:
94
  result = qa_chain({"query": prompt})
95
+ paragraph = result.get("result", "").strip()
96
  if not paragraph:
97
  paragraph = "(本段生成失敗,請嘗試減少段落或改用較小模型。)"
98
  except Exception as e:
 
103
 
104
  doc.save(docx_file)
105
  full_text = "\n\n".join(all_text)
 
106
  rate_info = get_hf_rate_limit()
107
  return f"{rate_info}\n\n{full_text}", docx_file
108
 
109
  # -------------------------------
110
  # 7. Gradio 介面
111
  # -------------------------------
112
+ with gr.Blocks() as demo:
113
+ gr.Markdown("# 佛教經論 RAG 系統 (HF API)")
114
+ gr.Markdown("使用 Hugging Face Endpoint LLM + FAISS RAG,生成文章並提示 API 剩餘額度。")
115
+
116
+ query_input = gr.Textbox(lines=2, placeholder="請輸入文章主題", label="文章主題")
117
+ segments_input = gr.Slider(minimum=1, maximum=10, step=1, value=5, label="段落數")
118
+ output_text = gr.Textbox(label="生成文章 + API 剩餘次數")
119
+ output_file = gr.File(label="下載 DOCX")
120
+
121
+ query_input.submit(generate_article_with_rate, [query_input, segments_input], [output_text, output_file])
122
+ segments_input.change(generate_article_with_rate, [query_input, segments_input], [output_text, output_file])
 
 
123
 
124
  if __name__ == "__main__":
125
+ demo.launch()