AngelBottomless's picture
Upload 18 files
0a4fc35 verified
from collections import defaultdict, deque
import datetime
import logging
import random
import time
import numpy as np
import torch
import torch.distributed as dist
logger = logging.getLogger(__name__)
def random_seed(seed=0):
random.seed(seed)
torch.random.manual_seed(seed)
np.random.seed(seed)
class SmoothedValue(object):
"""Track a series of values and provide access to smoothed values over a
window or the global series average.
"""
def __init__(self, window_size=1000, fmt=None):
if fmt is None:
fmt = "{avg:.4f} ({global_avg:.4f})"
self.deque = deque(maxlen=window_size)
self.total = 0.0
self.count = 0
self.fmt = fmt
def update(self, value, n=1):
self.deque.append(value)
self.count += n
self.total += value * n
def synchronize_between_processes(self):
"""
Warning: does not synchronize the deque!
"""
t = torch.tensor([self.count, self.total], dtype=torch.float64, device="cuda")
dist.barrier()
dist.all_reduce(t)
t = t.tolist()
self.count = int(t[0])
self.total = t[1]
@property
def median(self):
d = torch.tensor(list(self.deque))
return d.median().item()
@property
def avg(self):
d = torch.tensor(list(self.deque), dtype=torch.float32)
return d.mean().item()
@property
def global_avg(self):
return self.total / self.count
@property
def max(self):
return max(self.deque)
@property
def value(self):
return self.deque[-1]
def __str__(self):
return self.fmt.format(
median=self.median, avg=self.avg, global_avg=self.global_avg, max=self.max, value=self.value
)
class MetricLogger(object):
def __init__(self, delimiter="\t", window_size=1000, fmt=None):
self.meters = defaultdict(lambda: SmoothedValue(window_size, fmt))
self.delimiter = delimiter
def update(self, **kwargs):
for k, v in kwargs.items():
if v is None:
continue
elif isinstance(v, (torch.Tensor, float, int)):
self.meters[k].update(v.item() if isinstance(v, torch.Tensor) else v)
elif isinstance(v, list):
for i, sub_v in enumerate(v):
self.meters[f"{k}_{i}"].update(sub_v.item() if isinstance(sub_v, torch.Tensor) else sub_v)
elif isinstance(v, dict):
for sub_key, sub_v in v.items():
self.meters[f"{k}_{sub_key}"].update(sub_v.item() if isinstance(sub_v, torch.Tensor) else sub_v)
else:
raise TypeError(f"Unsupported type {type(v)} for metric {k}")
def __str__(self):
loss_str = []
for name, meter in self.meters.items():
loss_str.append("{}: {}".format(name, str(meter)))
return self.delimiter.join(loss_str)
def synchronize_between_processes(self):
for meter in self.meters.values():
meter.synchronize_between_processes()
def add_meter(self, name, meter):
self.meters[name] = meter
def log_every(self, iterable, print_freq, header=None, start_iter=0, samples_per_iter=None):
i = start_iter
if not header:
header = ""
start_time = time.time()
end = time.time()
iter_time = SmoothedValue(fmt="{avg:.4f}")
data_time = SmoothedValue(fmt="{avg:.4f}")
log_msg = [header, "[{0" + "}/{1}]", "{meters}", "time: {time}", "data: {data}"]
if samples_per_iter is not None:
log_msg.append("samples/sec: {samples_per_sec:.2f}")
if torch.cuda.is_available():
log_msg.append("max mem: {memory:.0f}")
log_msg = self.delimiter.join(log_msg)
MB = 1024.0 * 1024.0
for obj in iterable:
data_time.update(time.time() - end)
yield obj
iter_time.update(time.time() - end)
if i % print_freq == 0:
try:
total_len = len(iterable)
except:
total_len = "unknown"
msg_kwargs = {
"meters": str(self),
"time": str(iter_time),
"data": str(data_time),
}
if samples_per_iter is not None:
msg_kwargs["samples_per_sec"] = samples_per_iter / iter_time.avg
if torch.cuda.is_available():
msg_kwargs["memory"] = torch.cuda.max_memory_allocated() / MB
logger.info(log_msg.format(i, total_len, **msg_kwargs))
i += 1
end = time.time()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
logger.info("{} Total time: {}".format(header, total_time_str))