Spaces:
Runtime error
Runtime error
| from collections import defaultdict, deque | |
| import datetime | |
| import logging | |
| import random | |
| import time | |
| import numpy as np | |
| import torch | |
| import torch.distributed as dist | |
| logger = logging.getLogger(__name__) | |
| def random_seed(seed=0): | |
| random.seed(seed) | |
| torch.random.manual_seed(seed) | |
| np.random.seed(seed) | |
| class SmoothedValue(object): | |
| """Track a series of values and provide access to smoothed values over a | |
| window or the global series average. | |
| """ | |
| def __init__(self, window_size=1000, fmt=None): | |
| if fmt is None: | |
| fmt = "{avg:.4f} ({global_avg:.4f})" | |
| self.deque = deque(maxlen=window_size) | |
| self.total = 0.0 | |
| self.count = 0 | |
| self.fmt = fmt | |
| def update(self, value, n=1): | |
| self.deque.append(value) | |
| self.count += n | |
| self.total += value * n | |
| def synchronize_between_processes(self): | |
| """ | |
| Warning: does not synchronize the deque! | |
| """ | |
| t = torch.tensor([self.count, self.total], dtype=torch.float64, device="cuda") | |
| dist.barrier() | |
| dist.all_reduce(t) | |
| t = t.tolist() | |
| self.count = int(t[0]) | |
| self.total = t[1] | |
| def median(self): | |
| d = torch.tensor(list(self.deque)) | |
| return d.median().item() | |
| def avg(self): | |
| d = torch.tensor(list(self.deque), dtype=torch.float32) | |
| return d.mean().item() | |
| def global_avg(self): | |
| return self.total / self.count | |
| def max(self): | |
| return max(self.deque) | |
| def value(self): | |
| return self.deque[-1] | |
| def __str__(self): | |
| return self.fmt.format( | |
| median=self.median, avg=self.avg, global_avg=self.global_avg, max=self.max, value=self.value | |
| ) | |
| class MetricLogger(object): | |
| def __init__(self, delimiter="\t", window_size=1000, fmt=None): | |
| self.meters = defaultdict(lambda: SmoothedValue(window_size, fmt)) | |
| self.delimiter = delimiter | |
| def update(self, **kwargs): | |
| for k, v in kwargs.items(): | |
| if v is None: | |
| continue | |
| elif isinstance(v, (torch.Tensor, float, int)): | |
| self.meters[k].update(v.item() if isinstance(v, torch.Tensor) else v) | |
| elif isinstance(v, list): | |
| for i, sub_v in enumerate(v): | |
| self.meters[f"{k}_{i}"].update(sub_v.item() if isinstance(sub_v, torch.Tensor) else sub_v) | |
| elif isinstance(v, dict): | |
| for sub_key, sub_v in v.items(): | |
| self.meters[f"{k}_{sub_key}"].update(sub_v.item() if isinstance(sub_v, torch.Tensor) else sub_v) | |
| else: | |
| raise TypeError(f"Unsupported type {type(v)} for metric {k}") | |
| def __str__(self): | |
| loss_str = [] | |
| for name, meter in self.meters.items(): | |
| loss_str.append("{}: {}".format(name, str(meter))) | |
| return self.delimiter.join(loss_str) | |
| def synchronize_between_processes(self): | |
| for meter in self.meters.values(): | |
| meter.synchronize_between_processes() | |
| def add_meter(self, name, meter): | |
| self.meters[name] = meter | |
| def log_every(self, iterable, print_freq, header=None, start_iter=0, samples_per_iter=None): | |
| i = start_iter | |
| if not header: | |
| header = "" | |
| start_time = time.time() | |
| end = time.time() | |
| iter_time = SmoothedValue(fmt="{avg:.4f}") | |
| data_time = SmoothedValue(fmt="{avg:.4f}") | |
| log_msg = [header, "[{0" + "}/{1}]", "{meters}", "time: {time}", "data: {data}"] | |
| if samples_per_iter is not None: | |
| log_msg.append("samples/sec: {samples_per_sec:.2f}") | |
| if torch.cuda.is_available(): | |
| log_msg.append("max mem: {memory:.0f}") | |
| log_msg = self.delimiter.join(log_msg) | |
| MB = 1024.0 * 1024.0 | |
| for obj in iterable: | |
| data_time.update(time.time() - end) | |
| yield obj | |
| iter_time.update(time.time() - end) | |
| if i % print_freq == 0: | |
| try: | |
| total_len = len(iterable) | |
| except: | |
| total_len = "unknown" | |
| msg_kwargs = { | |
| "meters": str(self), | |
| "time": str(iter_time), | |
| "data": str(data_time), | |
| } | |
| if samples_per_iter is not None: | |
| msg_kwargs["samples_per_sec"] = samples_per_iter / iter_time.avg | |
| if torch.cuda.is_available(): | |
| msg_kwargs["memory"] = torch.cuda.max_memory_allocated() / MB | |
| logger.info(log_msg.format(i, total_len, **msg_kwargs)) | |
| i += 1 | |
| end = time.time() | |
| total_time = time.time() - start_time | |
| total_time_str = str(datetime.timedelta(seconds=int(total_time))) | |
| logger.info("{} Total time: {}".format(header, total_time_str)) | |