File size: 5,092 Bytes
0a4fc35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
from collections import defaultdict, deque
import datetime
import logging
import random
import time

import numpy as np
import torch
import torch.distributed as dist

logger = logging.getLogger(__name__)


def random_seed(seed=0):
    random.seed(seed)
    torch.random.manual_seed(seed)
    np.random.seed(seed)


class SmoothedValue(object):
    """Track a series of values and provide access to smoothed values over a

    window or the global series average.

    """

    def __init__(self, window_size=1000, fmt=None):
        if fmt is None:
            fmt = "{avg:.4f} ({global_avg:.4f})"
        self.deque = deque(maxlen=window_size)
        self.total = 0.0
        self.count = 0
        self.fmt = fmt

    def update(self, value, n=1):
        self.deque.append(value)
        self.count += n
        self.total += value * n

    def synchronize_between_processes(self):
        """

        Warning: does not synchronize the deque!

        """
        t = torch.tensor([self.count, self.total], dtype=torch.float64, device="cuda")
        dist.barrier()
        dist.all_reduce(t)
        t = t.tolist()
        self.count = int(t[0])
        self.total = t[1]

    @property
    def median(self):
        d = torch.tensor(list(self.deque))
        return d.median().item()

    @property
    def avg(self):
        d = torch.tensor(list(self.deque), dtype=torch.float32)
        return d.mean().item()

    @property
    def global_avg(self):
        return self.total / self.count

    @property
    def max(self):
        return max(self.deque)

    @property
    def value(self):
        return self.deque[-1]

    def __str__(self):
        return self.fmt.format(
            median=self.median, avg=self.avg, global_avg=self.global_avg, max=self.max, value=self.value
        )


class MetricLogger(object):
    def __init__(self, delimiter="\t", window_size=1000, fmt=None):
        self.meters = defaultdict(lambda: SmoothedValue(window_size, fmt))
        self.delimiter = delimiter

    def update(self, **kwargs):
        for k, v in kwargs.items():
            if v is None:
                continue
            elif isinstance(v, (torch.Tensor, float, int)):
                self.meters[k].update(v.item() if isinstance(v, torch.Tensor) else v)
            elif isinstance(v, list):
                for i, sub_v in enumerate(v):
                    self.meters[f"{k}_{i}"].update(sub_v.item() if isinstance(sub_v, torch.Tensor) else sub_v)
            elif isinstance(v, dict):
                for sub_key, sub_v in v.items():
                    self.meters[f"{k}_{sub_key}"].update(sub_v.item() if isinstance(sub_v, torch.Tensor) else sub_v)
            else:
                raise TypeError(f"Unsupported type {type(v)} for metric {k}")

    def __str__(self):
        loss_str = []
        for name, meter in self.meters.items():
            loss_str.append("{}: {}".format(name, str(meter)))
        return self.delimiter.join(loss_str)

    def synchronize_between_processes(self):
        for meter in self.meters.values():
            meter.synchronize_between_processes()

    def add_meter(self, name, meter):
        self.meters[name] = meter

    def log_every(self, iterable, print_freq, header=None, start_iter=0, samples_per_iter=None):
        i = start_iter
        if not header:
            header = ""
        start_time = time.time()
        end = time.time()
        iter_time = SmoothedValue(fmt="{avg:.4f}")
        data_time = SmoothedValue(fmt="{avg:.4f}")
        log_msg = [header, "[{0" + "}/{1}]", "{meters}", "time: {time}", "data: {data}"]
        if samples_per_iter is not None:
            log_msg.append("samples/sec: {samples_per_sec:.2f}")
        if torch.cuda.is_available():
            log_msg.append("max mem: {memory:.0f}")
        log_msg = self.delimiter.join(log_msg)
        MB = 1024.0 * 1024.0
        for obj in iterable:
            data_time.update(time.time() - end)
            yield obj
            iter_time.update(time.time() - end)
            if i % print_freq == 0:
                try:
                    total_len = len(iterable)
                except:
                    total_len = "unknown"

                msg_kwargs = {
                    "meters": str(self),
                    "time": str(iter_time),
                    "data": str(data_time),
                }
                if samples_per_iter is not None:
                    msg_kwargs["samples_per_sec"] = samples_per_iter / iter_time.avg
                if torch.cuda.is_available():
                    msg_kwargs["memory"] = torch.cuda.max_memory_allocated() / MB

                logger.info(log_msg.format(i, total_len, **msg_kwargs))
            i += 1
            end = time.time()
        total_time = time.time() - start_time
        total_time_str = str(datetime.timedelta(seconds=int(total_time)))
        logger.info("{} Total time: {}".format(header, total_time_str))