SuperVision: DINOv3 + LoRA for Superconductor Tc Prediction

Model Description

This model predicts superconductor critical temperatures (Tc) using a Vision Transformer (DINOv3) fine-tuned with LoRA on 2D rendered crystal structures.

Key Features:

  • Architecture: DINOv3-base (86M parameters) + LoRA (1.1M trainable)
  • Input: 224×224 RGB images of crystal structures with physics-informed encoding
  • Pre-training: ImageNet (14M images) via self-supervised learning
  • Fine-tuning: 5,773 superconductor materials from 3DSC dataset
  • Performance: MAE 4.85 K, R² 0.74 (49-60% better than literature)

Intended Use

Primary Use Case:

  • Predict critical temperature (Tc) of superconducting materials from crystal structure images
  • Screen candidate materials for high-temperature superconductivity
  • Accelerate materials discovery in computational materials science

Users:

  • Materials scientists and computational chemists
  • Researchers in condensed matter physics
  • Machine learning practitioners working on scientific applications

Training Data

Dataset: 3DSC (3D Superconductor Dataset)

  • 5,773 superconductor materials
  • Train: 4,041 materials (70%)
  • Validation: 866 materials (15%)
  • Test: 866 materials (15%)

Data Sources:

  • Crystal structures: Materials Project
  • Critical temperatures: SuperCon database

Preprocessing:

  • 3D CIF structures rendered to 2D images using ASE
  • Physics-informed RGB encoding:
    • R channel: d-electron count
    • G channel: Valence electrons
    • B channel: Atomic mass

Performance

Test Set Results

Metric Value
MAE 4.85 K
RMSE 9.88 K
0.7394

Comparison to Baselines

Method MAE (K) Improvement
Random Forest (Stanev et al. 2018) ~9.5 49%
GNN (Konno et al. 2021) ~12 60%
SuperVision DINOv3 (ours) 4.85 State-of-the-art

Training Details

  • Best Epoch: 23/40
  • Training Time: ~40 hours (CPU)
  • Optimizer: AdamW
  • Learning Rate: 1e-4
  • Batch Size: 8
  • LoRA Config: rank=16, alpha=32, dropout=0.1

Usage

from transformers import AutoImageProcessor, AutoModel
import torch
from PIL import Image

# Load model and processor
processor = AutoImageProcessor.from_pretrained("shreyaspulle98/supervision-dinov3-tc-prediction")
model = AutoModel.from_pretrained("shreyaspulle98/supervision-dinov3-tc-prediction")

# Load and process image
image = Image.open("crystal_structure.png")
inputs = processor(images=image, return_tensors="pt")

# Predict critical temperature
with torch.no_grad():
    tc_prediction = model(**inputs).logits

print(f"Predicted Tc: {tc_prediction.item():.2f} K")

Limitations

  1. Training Data Coverage: Limited to materials in 3DSC dataset (primarily conventional and cuprate superconductors)
  2. High-Tc Underestimation: Larger errors for materials with Tc > 100 K (limited training samples)
  3. Image Dependency: Requires crystal structure rendering with specific physics-informed encoding
  4. Computational Cost: Slower inference than ALIGNN (~120ms vs 50ms per sample)

Ethical Considerations

  • Model is for research purposes only, not for production materials design without experimental validation
  • Predictions should be verified experimentally before synthesis attempts
  • Model may have biases toward material classes well-represented in training data

Citation

@software{supervision2024,
  title={SuperVision: Transfer Learning for Superconductor Tc Prediction},
  author={Your Name},
  year={2024},
  url={https://github.com/yourusername/SuperVision}
}

License

MIT License

More Information

Downloads last month
23
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Dataset used to train shreyaspullehf/supervision-dinov3-tc-prediction

Evaluation results

  • Mean Absolute Error (K) on 3DSC Superconductor Dataset
    self-reported
    4.850
  • Root Mean Squared Error (K) on 3DSC Superconductor Dataset
    self-reported
    9.880
  • R² Score on 3DSC Superconductor Dataset
    self-reported
    0.739