Gelato-30B-A3B-f32-AIO-GGUF

Gelato-30B-A3B is a 30B-parameter Qwen3-VL MoE–based grounding model specialized for GUI computer-use tasks, trained on the Click-100k dataset to map natural language instructions and screen images to precise click coordinates on user interfaces. It achieves state-of-the-art accuracy on key grounding benchmarks, reaching about 63.88%63.88% on ScreenSpot-Pro and 69.15%/74.65%69.15%/74.65% on OS-World-G / OS-World-G (Refined), outperforming prior dedicated computer grounding models such as GTA1-32B and even larger general-purpose VLMs like Qwen3-VL-235B-A22B-Instruct. The model is released with an open codebase and examples showing how to feed a GUI screenshot plus an instruction and obtain normalized (x,y)(x,y) coordinates, making it a strong drop-in component for building computer-use agents that can reliably locate UI elements and interact with real software environments.

Model Files

File Name Quant Type File Size
Gelato-30B-A3B-BF16.gguf BF16 61.1 GB
Gelato-30B-A3B-F16.gguf F16 61.1 GB
Gelato-30B-A3B-F32.gguf F32 122 GB
Gelato-30B-A3B.IQ4_XS.gguf IQ4_XS 16.6 GB
Gelato-30B-A3B.Q2_K.gguf Q2_K 11.3 GB
Gelato-30B-A3B.Q3_K_L.gguf Q3_K_L 15.9 GB
Gelato-30B-A3B.Q3_K_M.gguf Q3_K_M 14.7 GB
Gelato-30B-A3B.Q3_K_S.gguf Q3_K_S 13.3 GB
Gelato-30B-A3B.Q4_K_M.gguf Q4_K_M 18.6 GB
Gelato-30B-A3B.Q4_K_S.gguf Q4_K_S 17.5 GB
Gelato-30B-A3B.Q5_K_M.gguf Q5_K_M 21.7 GB
Gelato-30B-A3B.Q5_K_S.gguf Q5_K_S 21.1 GB
Gelato-30B-A3B.Q6_K.gguf Q6_K 25.1 GB
Gelato-30B-A3B.Q8_0.gguf Q8_0 32.5 GB
Gelato-30B-A3B.i1-IQ1_M.gguf i1-IQ1_M 7.08 GB
Gelato-30B-A3B.i1-IQ1_S.gguf i1-IQ1_S 6.42 GB
Gelato-30B-A3B.i1-IQ2_M.gguf i1-IQ2_M 10.2 GB
Gelato-30B-A3B.i1-IQ2_S.gguf i1-IQ2_S 9.29 GB
Gelato-30B-A3B.i1-IQ2_XS.gguf i1-IQ2_XS 9.08 GB
Gelato-30B-A3B.i1-IQ2_XXS.gguf i1-IQ2_XXS 8.18 GB
Gelato-30B-A3B.i1-IQ3_M.gguf i1-IQ3_M 13.5 GB
Gelato-30B-A3B.i1-IQ3_S.gguf i1-IQ3_S 13.3 GB
Gelato-30B-A3B.i1-IQ3_XS.gguf i1-IQ3_XS 12.6 GB
Gelato-30B-A3B.i1-IQ3_XXS.gguf i1-IQ3_XXS 11.8 GB
Gelato-30B-A3B.i1-IQ4_XS.gguf i1-IQ4_XS 16.4 GB
Gelato-30B-A3B.i1-Q2_K.gguf i1-Q2_K 11.3 GB
Gelato-30B-A3B.i1-Q2_K_S.gguf i1-Q2_K_S 10.5 GB
Gelato-30B-A3B.i1-Q3_K_L.gguf i1-Q3_K_L 15.9 GB
Gelato-30B-A3B.i1-Q3_K_M.gguf i1-Q3_K_M 14.7 GB
Gelato-30B-A3B.i1-Q3_K_S.gguf i1-Q3_K_S 13.3 GB
Gelato-30B-A3B.i1-Q4_0.gguf i1-Q4_0 17.4 GB
Gelato-30B-A3B.i1-Q4_1.gguf i1-Q4_1 19.2 GB
Gelato-30B-A3B.i1-Q4_K_M.gguf i1-Q4_K_M 18.6 GB
Gelato-30B-A3B.i1-Q4_K_S.gguf i1-Q4_K_S 17.5 GB
Gelato-30B-A3B.i1-Q5_K_M.gguf i1-Q5_K_M 21.7 GB
Gelato-30B-A3B.i1-Q5_K_S.gguf i1-Q5_K_S 21.1 GB
Gelato-30B-A3B.i1-Q6_K.gguf i1-Q6_K 25.1 GB
Gelato-30B-A3B-mmproj-bf16.gguf mmproj-bf16 1.09 GB
Gelato-30B-A3B-mmproj-f16.gguf mmproj-f16 1.08 GB
Gelato-30B-A3B-mmproj-f32.gguf mmproj-f32 2.15 GB
Gelato-30B-A3B-mmproj-q8_0.gguf mmproj-q8_0 712 MB
Gelato-30B-A3B.imatrix.gguf imatrix 122 MB

Quants Usage

(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)

Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better):

image.png

Downloads last month
784
GGUF
Model size
31B params
Architecture
qwen3vlmoe
Hardware compatibility
Log In to view the estimation

1-bit

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

16-bit

32-bit

Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for prithivMLmods/Gelato-30B-A3B-f32-AIO-GGUF

Quantized
(5)
this model