Gelato-30B-A3B-f32-AIO-GGUF
Gelato-30B-A3B is a 30B-parameter Qwen3-VL MoE–based grounding model specialized for GUI computer-use tasks, trained on the Click-100k dataset to map natural language instructions and screen images to precise click coordinates on user interfaces. It achieves state-of-the-art accuracy on key grounding benchmarks, reaching about 63.88%63.88% on ScreenSpot-Pro and 69.15%/74.65%69.15%/74.65% on OS-World-G / OS-World-G (Refined), outperforming prior dedicated computer grounding models such as GTA1-32B and even larger general-purpose VLMs like Qwen3-VL-235B-A22B-Instruct. The model is released with an open codebase and examples showing how to feed a GUI screenshot plus an instruction and obtain normalized (x,y)(x,y) coordinates, making it a strong drop-in component for building computer-use agents that can reliably locate UI elements and interact with real software environments.
Model Files
| File Name | Quant Type | File Size |
|---|---|---|
| Gelato-30B-A3B-BF16.gguf | BF16 | 61.1 GB |
| Gelato-30B-A3B-F16.gguf | F16 | 61.1 GB |
| Gelato-30B-A3B-F32.gguf | F32 | 122 GB |
| Gelato-30B-A3B.IQ4_XS.gguf | IQ4_XS | 16.6 GB |
| Gelato-30B-A3B.Q2_K.gguf | Q2_K | 11.3 GB |
| Gelato-30B-A3B.Q3_K_L.gguf | Q3_K_L | 15.9 GB |
| Gelato-30B-A3B.Q3_K_M.gguf | Q3_K_M | 14.7 GB |
| Gelato-30B-A3B.Q3_K_S.gguf | Q3_K_S | 13.3 GB |
| Gelato-30B-A3B.Q4_K_M.gguf | Q4_K_M | 18.6 GB |
| Gelato-30B-A3B.Q4_K_S.gguf | Q4_K_S | 17.5 GB |
| Gelato-30B-A3B.Q5_K_M.gguf | Q5_K_M | 21.7 GB |
| Gelato-30B-A3B.Q5_K_S.gguf | Q5_K_S | 21.1 GB |
| Gelato-30B-A3B.Q6_K.gguf | Q6_K | 25.1 GB |
| Gelato-30B-A3B.Q8_0.gguf | Q8_0 | 32.5 GB |
| Gelato-30B-A3B.i1-IQ1_M.gguf | i1-IQ1_M | 7.08 GB |
| Gelato-30B-A3B.i1-IQ1_S.gguf | i1-IQ1_S | 6.42 GB |
| Gelato-30B-A3B.i1-IQ2_M.gguf | i1-IQ2_M | 10.2 GB |
| Gelato-30B-A3B.i1-IQ2_S.gguf | i1-IQ2_S | 9.29 GB |
| Gelato-30B-A3B.i1-IQ2_XS.gguf | i1-IQ2_XS | 9.08 GB |
| Gelato-30B-A3B.i1-IQ2_XXS.gguf | i1-IQ2_XXS | 8.18 GB |
| Gelato-30B-A3B.i1-IQ3_M.gguf | i1-IQ3_M | 13.5 GB |
| Gelato-30B-A3B.i1-IQ3_S.gguf | i1-IQ3_S | 13.3 GB |
| Gelato-30B-A3B.i1-IQ3_XS.gguf | i1-IQ3_XS | 12.6 GB |
| Gelato-30B-A3B.i1-IQ3_XXS.gguf | i1-IQ3_XXS | 11.8 GB |
| Gelato-30B-A3B.i1-IQ4_XS.gguf | i1-IQ4_XS | 16.4 GB |
| Gelato-30B-A3B.i1-Q2_K.gguf | i1-Q2_K | 11.3 GB |
| Gelato-30B-A3B.i1-Q2_K_S.gguf | i1-Q2_K_S | 10.5 GB |
| Gelato-30B-A3B.i1-Q3_K_L.gguf | i1-Q3_K_L | 15.9 GB |
| Gelato-30B-A3B.i1-Q3_K_M.gguf | i1-Q3_K_M | 14.7 GB |
| Gelato-30B-A3B.i1-Q3_K_S.gguf | i1-Q3_K_S | 13.3 GB |
| Gelato-30B-A3B.i1-Q4_0.gguf | i1-Q4_0 | 17.4 GB |
| Gelato-30B-A3B.i1-Q4_1.gguf | i1-Q4_1 | 19.2 GB |
| Gelato-30B-A3B.i1-Q4_K_M.gguf | i1-Q4_K_M | 18.6 GB |
| Gelato-30B-A3B.i1-Q4_K_S.gguf | i1-Q4_K_S | 17.5 GB |
| Gelato-30B-A3B.i1-Q5_K_M.gguf | i1-Q5_K_M | 21.7 GB |
| Gelato-30B-A3B.i1-Q5_K_S.gguf | i1-Q5_K_S | 21.1 GB |
| Gelato-30B-A3B.i1-Q6_K.gguf | i1-Q6_K | 25.1 GB |
| Gelato-30B-A3B-mmproj-bf16.gguf | mmproj-bf16 | 1.09 GB |
| Gelato-30B-A3B-mmproj-f16.gguf | mmproj-f16 | 1.08 GB |
| Gelato-30B-A3B-mmproj-f32.gguf | mmproj-f32 | 2.15 GB |
| Gelato-30B-A3B-mmproj-q8_0.gguf | mmproj-q8_0 | 712 MB |
| Gelato-30B-A3B.imatrix.gguf | imatrix | 122 MB |
Quants Usage
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better):
- Downloads last month
- 784
Model tree for prithivMLmods/Gelato-30B-A3B-f32-AIO-GGUF
Base model
Qwen/Qwen3-VL-30B-A3B-Instruct