philldevcoder's picture
Update README.md
418e5e5 verified
# Training Details
## Training Data
- Open-access chest X-ray datasets (e.g., NIH ChestX-ray14, CheXpert).
- Data preprocessing: normalization, resizing, augmentation.
## Training Procedure
- **Stage 1**: EfficientNet-B0 for coarse classification (normal vs abnormal).
- **Stage 2**: EfficientNet-B2 for expert-level multi-label disease classification.
- **Grad-CAM** integrated for visual interpretability.
## Training Hyperparameters
- Mixed precision (fp16)
- Optimizer: AdamW
- Learning rate scheduler: CosineAnnealing
- Loss: Weighted BCE with logits
---
# Evaluation
## Testing Data
- Evaluated on public benchmark datasets (CheXpert, NIH ChestX-ray14).
## Metrics
- AUROC (per-class and mean)
- F1-score
- Sensitivity/Specificity
## Results
- Mean AUROC ≈ **0.85–0.90** (depending on dataset and task)
- Grad-CAM heatmaps align with radiologically relevant regions
## Model Examination
- Grad-CAM visualizations available for each prediction
- Two-stage pipeline mirrors clinical workflow
---
# Environmental Impact
- **Hardware Type**: NVIDIA Tesla V100 (cloud GPU)
- **Hours used**: ~60 GPU hours
- **Cloud Provider**: Google Cloud
- **Compute Region**: US-central
- **Carbon Emitted**: Estimated ~25 kg CO2eq
---
# Technical Specifications
## Model Architecture
- Stage 1: EfficientNet-B0
- Stage 2: EfficientNet-B2
- Hierarchical classification pipeline
- Grad-CAM interpretability module
## Compute Infrastructure
- Hardware: NVIDIA V100 (16GB)
- Software: PyTorch, Hugging Face Transformers, CUDA 11.8
---
# Citation
## BibTeX
```bibtex
@article{indabax2025cxrnet,
title={Hierarchical CXR-Net: A Two-Stage Framework for Efficient and Interpretable Chest X-Ray Diagnosis},
author={Ssempeebwa, Phillip and IndabaX Uganda AI Research Lab},
year={2025},
journal={Digital Health Africa 2025 Poster Proceedings}
}