| # Training Details | |
| ## Training Data | |
| - Open-access chest X-ray datasets (e.g., NIH ChestX-ray14, CheXpert). | |
| - Data preprocessing: normalization, resizing, augmentation. | |
| ## Training Procedure | |
| - **Stage 1**: EfficientNet-B0 for coarse classification (normal vs abnormal). | |
| - **Stage 2**: EfficientNet-B2 for expert-level multi-label disease classification. | |
| - **Grad-CAM** integrated for visual interpretability. | |
| ## Training Hyperparameters | |
| - Mixed precision (fp16) | |
| - Optimizer: AdamW | |
| - Learning rate scheduler: CosineAnnealing | |
| - Loss: Weighted BCE with logits | |
| --- | |
| # Evaluation | |
| ## Testing Data | |
| - Evaluated on public benchmark datasets (CheXpert, NIH ChestX-ray14). | |
| ## Metrics | |
| - AUROC (per-class and mean) | |
| - F1-score | |
| - Sensitivity/Specificity | |
| ## Results | |
| - Mean AUROC ≈ **0.85–0.90** (depending on dataset and task) | |
| - Grad-CAM heatmaps align with radiologically relevant regions | |
| ## Model Examination | |
| - Grad-CAM visualizations available for each prediction | |
| - Two-stage pipeline mirrors clinical workflow | |
| --- | |
| # Environmental Impact | |
| - **Hardware Type**: NVIDIA Tesla V100 (cloud GPU) | |
| - **Hours used**: ~60 GPU hours | |
| - **Cloud Provider**: Google Cloud | |
| - **Compute Region**: US-central | |
| - **Carbon Emitted**: Estimated ~25 kg CO2eq | |
| --- | |
| # Technical Specifications | |
| ## Model Architecture | |
| - Stage 1: EfficientNet-B0 | |
| - Stage 2: EfficientNet-B2 | |
| - Hierarchical classification pipeline | |
| - Grad-CAM interpretability module | |
| ## Compute Infrastructure | |
| - Hardware: NVIDIA V100 (16GB) | |
| - Software: PyTorch, Hugging Face Transformers, CUDA 11.8 | |
| --- | |
| # Citation | |
| ## BibTeX | |
| ```bibtex | |
| @article{indabax2025cxrnet, | |
| title={Hierarchical CXR-Net: A Two-Stage Framework for Efficient and Interpretable Chest X-Ray Diagnosis}, | |
| author={Ssempeebwa, Phillip and IndabaX Uganda AI Research Lab}, | |
| year={2025}, | |
| journal={Digital Health Africa 2025 Poster Proceedings} | |
| } | |