BumbaLM-Embedding-4B-v0.1 (Jurídico Brasileiro)
Este modelo é uma versão fine-tuned do Qwen/Qwen3-Embedding-4B, especializado no domínio jurídico brasileiro. Ele foi desenvolvido como parte de uma pesquisa de doutorado focada no Enriquecimento de Embeddings Neurais para a Linguagem Jurídica Brasileira.
O BumbaLM-Embedding mapeia sentenças e parágrafos (como peças jurídicas, jurisprudência e consultas processuais) para um espaço vetorial denso de 2560 dimensões, sendo ideal para tarefas de:
- Recuperação de Informação Legal (Legal IR)
- Busca Semântica em processos jurídicos(TJMA e outros tribunais)
- Aplicações de RAG (Retrieval-Augmented Generation) para Direito
Model Description
- Model Type: Sentence Transformer
- Base model: Qwen3-Embedding-4B -->
- Maximum Sequence Length: 1024 tokens
- Output Dimensionality: 2560 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset: Legal Documents
- Language: Portuguese
- License: Unknown
Métricas de Avaliação
O modelo foi avaliado em um conjunto de teste reservado ("bumba_test_eval") composto por pares de consultas e trechos jurídicos reais.
| Métrica | Valor | Descrição |
|---|---|---|
| cosine_ndcg@10 | 0.3687 | Normalized Discounted Cumulative Gain (Métrica principal de ranking) |
| cosine_mrr@10 | 0.3363 | Mean Reciprocal Rank |
| cosine_map@100 | 0.3426 | Mean Average Precision |
| cosine_accuracy@10 | 0.4700 | Acurácia no top-10 resultados |
Nota: O modelo base foi refinado utilizando a função de perda TripletLoss, focando na distinção entre passagens juridicamente relevantes e "negativos difíceis" (trechos com termos similares mas semanticamente incorretos para a consulta).
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 1024, 'do_lower_case': False, 'architecture': 'Qwen3Model'})
(1): Pooling({'word_embedding_dimension': 2560, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': True, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("fabricioalmeida/BumbaLM-Embedding-4B-v0.1")
# Run inference
frases = [
"O réu apresentou habeas corpus preventivo.",
"A jurisprudência do STJ é pacífica nesse sentido.",
"Receita de bolo de cenoura com chocolate."
]
embeddings = model.encode(frases)
print(embeddings.shape)
# [3, 2560]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.2075, 0.2365],
# [0.2075, 1.0000, 0.1745],
# [0.2365, 0.1745, 1.0000]])
Evaluation
Metrics
Information Retrieval
- Dataset:
bumba_test_eval - Evaluated with
InformationRetrievalEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy@1 | 0.268 |
| cosine_accuracy@3 | 0.388 |
| cosine_accuracy@5 | 0.424 |
| cosine_accuracy@10 | 0.47 |
| cosine_precision@1 | 0.268 |
| cosine_precision@3 | 0.1293 |
| cosine_precision@5 | 0.0848 |
| cosine_precision@10 | 0.047 |
| cosine_recall@1 | 0.268 |
| cosine_recall@3 | 0.388 |
| cosine_recall@5 | 0.424 |
| cosine_recall@10 | 0.47 |
| cosine_ndcg@10 | 0.3687 |
| cosine_mrr@10 | 0.3363 |
| cosine_map@100 | 0.3426 |
Training Dataset
Legal Dataset
Size: 19,500 training samples
Columns:
sentence_0,sentence_1, andsentence_2Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 sentence_2 type string string string details - min: 31 tokens
- mean: 47.57 tokens
- max: 92 tokens
- min: 6 tokens
- mean: 242.04 tokens
- max: 463 tokens
- min: 6 tokens
- mean: 224.16 tokens
- max: 457 tokens
Loss:
TripletLosswith these parameters:{ "distance_metric": "TripletDistanceMetric.EUCLIDEAN", "triplet_margin": 5 }
Training Details
Training Hyperparameters
eval_strategy: stepsnum_train_epochs: 1multi_dataset_batch_sampler: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 8per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config: Nonedeepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthproject: huggingfacetrackio_space_id: trackioddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: noneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Trueprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robinrouter_mapping: {}learning_rate_mapping: {}
Training Logs
| Epoch | Step | bumba_test_eval_cosine_ndcg@10 |
|---|---|---|
| 0.0820 | 200 | 0.3687 |
Framework Versions
- Python: 3.12.12
- Sentence Transformers: 5.1.2
- Transformers: 4.57.2
- PyTorch: 2.9.0+cu126
- Accelerate: 1.12.0
- Datasets: 4.4.1
- Tokenizers: 0.22.1
Citation
BibTeX
@misc{bumbalm2025,
title={BumbaLM-Embeddings: Enriquecimento de Embeddings Neurais para a Linguagem Jurídica Brasileira},
author={Almeida, Fabrício},
year={2025},
description={Modelo de embedding fine-tuned para o domínio jurídico brasileiro (TJMA).}
}
- Downloads last month
- 26
Model tree for fabricioalmeida/BumbaLM-Embedding-4B-v0.1
Evaluation results
- Cosine Accuracy@1 on bumba test evalself-reported0.268
- Cosine Accuracy@3 on bumba test evalself-reported0.388
- Cosine Accuracy@5 on bumba test evalself-reported0.424
- Cosine Accuracy@10 on bumba test evalself-reported0.470
- Cosine Precision@1 on bumba test evalself-reported0.268
- Cosine Precision@3 on bumba test evalself-reported0.129
- Cosine Precision@5 on bumba test evalself-reported0.085
- Cosine Precision@10 on bumba test evalself-reported0.047
- Cosine Recall@1 on bumba test evalself-reported0.268
- Cosine Recall@3 on bumba test evalself-reported0.388