BumbaLM-Embedding-4B-v0.1 (Jurídico Brasileiro)

Este modelo é uma versão fine-tuned do Qwen/Qwen3-Embedding-4B, especializado no domínio jurídico brasileiro. Ele foi desenvolvido como parte de uma pesquisa de doutorado focada no Enriquecimento de Embeddings Neurais para a Linguagem Jurídica Brasileira.

O BumbaLM-Embedding mapeia sentenças e parágrafos (como peças jurídicas, jurisprudência e consultas processuais) para um espaço vetorial denso de 2560 dimensões, sendo ideal para tarefas de:

  • Recuperação de Informação Legal (Legal IR)
  • Busca Semântica em processos jurídicos(TJMA e outros tribunais)
  • Aplicações de RAG (Retrieval-Augmented Generation) para Direito

Model Description

  • Model Type: Sentence Transformer
  • Base model: Qwen3-Embedding-4B -->
  • Maximum Sequence Length: 1024 tokens
  • Output Dimensionality: 2560 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset: Legal Documents
  • Language: Portuguese
  • License: Unknown

Métricas de Avaliação

O modelo foi avaliado em um conjunto de teste reservado ("bumba_test_eval") composto por pares de consultas e trechos jurídicos reais.

Métrica Valor Descrição
cosine_ndcg@10 0.3687 Normalized Discounted Cumulative Gain (Métrica principal de ranking)
cosine_mrr@10 0.3363 Mean Reciprocal Rank
cosine_map@100 0.3426 Mean Average Precision
cosine_accuracy@10 0.4700 Acurácia no top-10 resultados

Nota: O modelo base foi refinado utilizando a função de perda TripletLoss, focando na distinção entre passagens juridicamente relevantes e "negativos difíceis" (trechos com termos similares mas semanticamente incorretos para a consulta).

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 1024, 'do_lower_case': False, 'architecture': 'Qwen3Model'})
  (1): Pooling({'word_embedding_dimension': 2560, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': True, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("fabricioalmeida/BumbaLM-Embedding-4B-v0.1")
# Run inference
frases = [
    "O réu apresentou habeas corpus preventivo.",
    "A jurisprudência do STJ é pacífica nesse sentido.",
    "Receita de bolo de cenoura com chocolate."
]

embeddings = model.encode(frases)
print(embeddings.shape)
# [3, 2560]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.2075, 0.2365],
#        [0.2075, 1.0000, 0.1745],
#        [0.2365, 0.1745, 1.0000]])

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.268
cosine_accuracy@3 0.388
cosine_accuracy@5 0.424
cosine_accuracy@10 0.47
cosine_precision@1 0.268
cosine_precision@3 0.1293
cosine_precision@5 0.0848
cosine_precision@10 0.047
cosine_recall@1 0.268
cosine_recall@3 0.388
cosine_recall@5 0.424
cosine_recall@10 0.47
cosine_ndcg@10 0.3687
cosine_mrr@10 0.3363
cosine_map@100 0.3426

Training Dataset

Legal Dataset

  • Size: 19,500 training samples

  • Columns: sentence_0, sentence_1, and sentence_2

  • Approximate statistics based on the first 1000 samples:

    sentence_0 sentence_1 sentence_2
    type string string string
    details
    • min: 31 tokens
    • mean: 47.57 tokens
    • max: 92 tokens
    • min: 6 tokens
    • mean: 242.04 tokens
    • max: 463 tokens
    • min: 6 tokens
    • mean: 224.16 tokens
    • max: 457 tokens
  • Loss: TripletLoss with these parameters:

    {
        "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
        "triplet_margin": 5
    }
    

Training Details

Training Hyperparameters

  • eval_strategy: steps
  • num_train_epochs: 1
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 8
  • per_device_eval_batch_size: 8
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • parallelism_config: None
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • project: huggingface
  • trackio_space_id: trackio
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: no
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: True
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Epoch Step bumba_test_eval_cosine_ndcg@10
0.0820 200 0.3687

Framework Versions

  • Python: 3.12.12
  • Sentence Transformers: 5.1.2
  • Transformers: 4.57.2
  • PyTorch: 2.9.0+cu126
  • Accelerate: 1.12.0
  • Datasets: 4.4.1
  • Tokenizers: 0.22.1

Citation

BibTeX

@misc{bumbalm2025,
    title={BumbaLM-Embeddings: Enriquecimento de Embeddings Neurais para a Linguagem Jurídica Brasileira},
    author={Almeida, Fabrício},
    year={2025},
    description={Modelo de embedding fine-tuned para o domínio jurídico brasileiro (TJMA).}
}
Downloads last month
26
Safetensors
Model size
4B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for fabricioalmeida/BumbaLM-Embedding-4B-v0.1

Base model

Qwen/Qwen3-4B-Base
Finetuned
(13)
this model

Evaluation results