Datasets:
π Brand Eye Dataset - Automotive Brand Detection
A comprehensive dataset for automotive brand/logo detection and recognition, formatted for YOLO training. This dataset contains high-quality images with precise annotations for 33 different automotive brands.
π Dataset Overview
This dataset is specifically designed for object detection tasks focusing on automotive brand recognition in various contexts including vehicles, logos, and brand emblems.
π Dataset Statistics
- Total Images: 1,404
- Total Annotations: 1,452
- Number of Classes: 33 automotive brands
- Image Format: JPG
- Annotation Format: YOLO v8 (.txt files)
- Split Ratio: Train 75.4% | Valid 15.2% | Test 9.3%
π Directory Structure
brand-eye-dataset/
βββ train/
β βββ images/ # 1,059 training images
β βββ labels/ # 1,059 training annotations (.txt)
βββ valid/
β βββ images/ # 214 validation images
β βββ labels/ # 214 validation annotations (.txt)
βββ test/
β βββ images/ # 131 test images
β βββ labels/ # 131 test annotations (.txt)
βββ data.yaml # Dataset configuration
βββ README.md # This file
π Automotive Brands (Classes)
The dataset includes the following 33 automotive brands:
0: audi 1: bmw 2: byd 3: cherry
4: chevrolet 5: citroen 6: cupra 7: dacia
8: fiat 9: ford 10: honda 11: hyundai
12: kia 13: landrover 14: mazda 15: mercedes
16: mg 17: mini 18: mitsubishi 19: nissan
20: opel 21: pegout 22: porsche 23: rangerover
24: renault 25: seat 26: skoda 27: suzuki
28: tesla 29: togg 30: toyota 31: volvo
32: wolksvogen
π YOLO Annotation Format
Each image has a corresponding .txt file with the same name containing bounding box annotations:
class_id center_x center_y width height
Where:
class_id: Integer class identifier (0-32)center_x,center_y: Normalized center coordinates (0.0-1.0)width,height: Normalized width and height (0.0-1.0)
Example annotation:
15 0.5 0.3 0.2 0.4 # Mercedes logo at center-left
26 0.7 0.8 0.15 0.25 # Skoda emblem at bottom-right
π Quick Start
Loading with Ultralytics
from ultralytics import YOLO
# Train a model
model = YOLO('yolov8n.pt')
results = model.train(
data='data.yaml',
epochs=100,
imgsz=640,
batch=16
)
Loading with Custom Code
import os
import cv2
import yaml
def load_dataset_info(data_yaml_path):
with open(data_yaml_path, 'r') as f:
data = yaml.safe_load(f)
return data
def load_image_and_labels(img_path, label_path):
# Load image
image = cv2.imread(img_path)
# Load labels
labels = []
if os.path.exists(label_path):
with open(label_path, 'r') as f:
for line in f:
labels.append(list(map(float, line.strip().split())))
return image, labels
# Example usage
data_info = load_dataset_info('data.yaml')
print(f"Classes: {data_info['names']}")
Visualization Example
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import cv2
def visualize_annotations(img_path, label_path, class_names):
image = cv2.imread(img_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
h, w = image.shape[:2]
fig, ax = plt.subplots(1, 1, figsize=(12, 8))
ax.imshow(image)
# Read annotations
with open(label_path, 'r') as f:
for line in f:
class_id, cx, cy, width, height = map(float, line.strip().split())
# Convert to pixel coordinates
x = (cx - width/2) * w
y = (cy - height/2) * h
w_box = width * w
h_box = height * h
# Create rectangle
rect = patches.Rectangle((x, y), w_box, h_box,
linewidth=2, edgecolor='red', facecolor='none')
ax.add_patch(rect)
# Add label
brand_name = class_names[int(class_id)]
ax.text(x, y-10, brand_name,
color='red', fontsize=10, fontweight='bold',
bbox=dict(boxstyle="round,pad=0.3", facecolor="white", alpha=0.7))
plt.axis('off')
plt.tight_layout()
plt.show()
# Example usage
class_names = ['audi', 'bmw', 'byd', 'cherry', 'chevrolet', 'citroen', 'cupra', 'dacia',
'fiat', 'ford', 'honda', 'hyundai', 'kia', 'landrover', 'mazda', 'mercedes',
'mg', 'mini', 'mitsubishi', 'nissan', 'opel', 'pegout', 'porsche', 'rangerover',
'renault', 'seat', 'skoda', 'suzuki', 'tesla', 'togg', 'toyota', 'volvo', 'wolksvogen']
# visualize_annotations('train/images/sample.jpg', 'train/labels/sample.txt', class_names)
π Dataset Quality & Statistics
Split Distribution
- Training Set: 1,059 images (75.4%)
- Validation Set: 214 images (15.2%)
- Test Set: 131 images (9.3%)
Class Distribution
Balanced representation across all 33 automotive brands with varying annotation density based on brand prevalence in real-world scenarios.
π― Use Cases
- Automotive Brand Recognition: Identify car brands from images
- Dealership Management: Automated inventory cataloging
- Market Research: Brand presence analysis in automotive industry
- Traffic Analysis: Vehicle brand distribution studies
- Insurance Applications: Automated vehicle brand identification
- Parking Management: Brand-specific parking solutions
π Model Training Results
This dataset was used to train the Brand Eye YOLO model with excellent results:
- [email protected]: 0.808 (Final epoch)
- [email protected]:0.95: 0.473 (Final epoch)
- Training Epochs: 50
- Best Performance: Available in model repository
- Model Size: ~14MB (optimized for deployment)
π§ Data Preparation & Validation
Quality Assurance
def validate_dataset(images_dir, labels_dir):
issues = []
for img_file in os.listdir(images_dir):
if img_file.lower().endswith(('.jpg', '.jpeg', '.png')):
label_file = img_file.rsplit('.', 1)[0] + '.txt'
label_path = os.path.join(labels_dir, label_file)
if not os.path.exists(label_path):
issues.append(f"Missing label: {label_file}")
else:
# Check label format
with open(label_path, 'r') as f:
for i, line in enumerate(f):
parts = line.strip().split()
if len(parts) != 5:
issues.append(f"Invalid format in {label_file}:{i+1}")
else:
try:
cls_id, cx, cy, w, h = map(float, parts)
if not (0 <= cx <= 1 and 0 <= cy <= 1 and 0 <= w <= 1 and 0 <= h <= 1):
issues.append(f"Invalid coordinates in {label_file}:{i+1}")
if not (0 <= cls_id <= 32):
issues.append(f"Invalid class_id in {label_file}:{i+1}")
except ValueError:
issues.append(f"Non-numeric values in {label_file}:{i+1}")
return issues
# Validate dataset
train_issues = validate_dataset('train/images/', 'train/labels/')
print(f"Training set validation: {len(train_issues)} issues found")
π License
This dataset is released under Apache 2.0 License.
π€ Citation
If you use this dataset in your research, please cite:
@dataset{brand_eye_dataset_2024,
title={Brand Eye Dataset: Automotive Brand Detection Dataset},
author={Haydar KadioΔlu},
year={2024},
publisher={Hugging Face},
url={https://huggingface.co/datasets/haydarkadioglu/brand-eye-dataset}
}
π Related Resources
- π€ Trained Model: haydarkadioglu/brand-eye-yolo
- π Training Analysis: See
visualize.ipynbin model repository - π» Code Examples: Available in model repository
- π Issues: Report issues in model repository
π Contact
- GitHub: haydarkadioglu
- Hugging Face: haydarkadioglu
- Model Repository: brand-eye-yolo
π― Perfect for automotive industry applications, research, and brand recognition tasks!
This dataset represents months of careful curation and annotation work, providing high-quality training data for automotive brand detection systems.
- Downloads last month
- 25