You need to agree to share your contact information to access this dataset

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this dataset content.

πŸš— Brand Eye Dataset - Automotive Brand Detection

A comprehensive dataset for automotive brand/logo detection and recognition, formatted for YOLO training. This dataset contains high-quality images with precise annotations for 33 different automotive brands.

πŸ“Š Dataset Overview

This dataset is specifically designed for object detection tasks focusing on automotive brand recognition in various contexts including vehicles, logos, and brand emblems.

πŸ“ˆ Dataset Statistics

  • Total Images: 1,404
  • Total Annotations: 1,452
  • Number of Classes: 33 automotive brands
  • Image Format: JPG
  • Annotation Format: YOLO v8 (.txt files)
  • Split Ratio: Train 75.4% | Valid 15.2% | Test 9.3%

πŸ“‚ Directory Structure

brand-eye-dataset/
β”œβ”€β”€ train/
β”‚   β”œβ”€β”€ images/          # 1,059 training images
β”‚   └── labels/          # 1,059 training annotations (.txt)
β”œβ”€β”€ valid/
β”‚   β”œβ”€β”€ images/          # 214 validation images  
β”‚   └── labels/          # 214 validation annotations (.txt)
β”œβ”€β”€ test/
β”‚   β”œβ”€β”€ images/          # 131 test images
β”‚   └── labels/          # 131 test annotations (.txt)
β”œβ”€β”€ data.yaml           # Dataset configuration
└── README.md           # This file

πŸš— Automotive Brands (Classes)

The dataset includes the following 33 automotive brands:

0: audi          1: bmw           2: byd           3: cherry
4: chevrolet     5: citroen       6: cupra         7: dacia
8: fiat          9: ford          10: honda        11: hyundai
12: kia          13: landrover    14: mazda        15: mercedes
16: mg           17: mini         18: mitsubishi   19: nissan
20: opel         21: pegout       22: porsche      23: rangerover
24: renault      25: seat         26: skoda        27: suzuki
28: tesla        29: togg         30: toyota       31: volvo
32: wolksvogen

πŸ“‹ YOLO Annotation Format

Each image has a corresponding .txt file with the same name containing bounding box annotations:

class_id center_x center_y width height

Where:

  • class_id: Integer class identifier (0-32)
  • center_x, center_y: Normalized center coordinates (0.0-1.0)
  • width, height: Normalized width and height (0.0-1.0)

Example annotation:

15 0.5 0.3 0.2 0.4    # Mercedes logo at center-left
26 0.7 0.8 0.15 0.25  # Skoda emblem at bottom-right

πŸš€ Quick Start

Loading with Ultralytics

from ultralytics import YOLO

# Train a model
model = YOLO('yolov8n.pt')
results = model.train(
    data='data.yaml',
    epochs=100,
    imgsz=640,
    batch=16
)

Loading with Custom Code

import os
import cv2
import yaml

def load_dataset_info(data_yaml_path):
    with open(data_yaml_path, 'r') as f:
        data = yaml.safe_load(f)
    return data

def load_image_and_labels(img_path, label_path):
    # Load image
    image = cv2.imread(img_path)

    # Load labels
    labels = []
    if os.path.exists(label_path):
        with open(label_path, 'r') as f:
            for line in f:
                labels.append(list(map(float, line.strip().split())))

    return image, labels

# Example usage
data_info = load_dataset_info('data.yaml')
print(f"Classes: {data_info['names']}")

Visualization Example

import matplotlib.pyplot as plt
import matplotlib.patches as patches
import cv2

def visualize_annotations(img_path, label_path, class_names):
    image = cv2.imread(img_path)
    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    h, w = image.shape[:2]

    fig, ax = plt.subplots(1, 1, figsize=(12, 8))
    ax.imshow(image)

    # Read annotations
    with open(label_path, 'r') as f:
        for line in f:
            class_id, cx, cy, width, height = map(float, line.strip().split())

            # Convert to pixel coordinates
            x = (cx - width/2) * w
            y = (cy - height/2) * h
            w_box = width * w
            h_box = height * h

            # Create rectangle
            rect = patches.Rectangle((x, y), w_box, h_box, 
                                   linewidth=2, edgecolor='red', facecolor='none')
            ax.add_patch(rect)

            # Add label
            brand_name = class_names[int(class_id)]
            ax.text(x, y-10, brand_name, 
                   color='red', fontsize=10, fontweight='bold',
                   bbox=dict(boxstyle="round,pad=0.3", facecolor="white", alpha=0.7))

    plt.axis('off')
    plt.tight_layout()
    plt.show()

# Example usage
class_names = ['audi', 'bmw', 'byd', 'cherry', 'chevrolet', 'citroen', 'cupra', 'dacia',
               'fiat', 'ford', 'honda', 'hyundai', 'kia', 'landrover', 'mazda', 'mercedes',
               'mg', 'mini', 'mitsubishi', 'nissan', 'opel', 'pegout', 'porsche', 'rangerover',
               'renault', 'seat', 'skoda', 'suzuki', 'tesla', 'togg', 'toyota', 'volvo', 'wolksvogen']

# visualize_annotations('train/images/sample.jpg', 'train/labels/sample.txt', class_names)

πŸ“Š Dataset Quality & Statistics

Split Distribution

  • Training Set: 1,059 images (75.4%)
  • Validation Set: 214 images (15.2%)
  • Test Set: 131 images (9.3%)

Class Distribution

Balanced representation across all 33 automotive brands with varying annotation density based on brand prevalence in real-world scenarios.

🎯 Use Cases

  • Automotive Brand Recognition: Identify car brands from images
  • Dealership Management: Automated inventory cataloging
  • Market Research: Brand presence analysis in automotive industry
  • Traffic Analysis: Vehicle brand distribution studies
  • Insurance Applications: Automated vehicle brand identification
  • Parking Management: Brand-specific parking solutions

πŸ† Model Training Results

This dataset was used to train the Brand Eye YOLO model with excellent results:

  • [email protected]: 0.808 (Final epoch)
  • [email protected]:0.95: 0.473 (Final epoch)
  • Training Epochs: 50
  • Best Performance: Available in model repository
  • Model Size: ~14MB (optimized for deployment)

πŸ”§ Data Preparation & Validation

Quality Assurance

def validate_dataset(images_dir, labels_dir):
    issues = []

    for img_file in os.listdir(images_dir):
        if img_file.lower().endswith(('.jpg', '.jpeg', '.png')):
            label_file = img_file.rsplit('.', 1)[0] + '.txt'
            label_path = os.path.join(labels_dir, label_file)

            if not os.path.exists(label_path):
                issues.append(f"Missing label: {label_file}")
            else:
                # Check label format
                with open(label_path, 'r') as f:
                    for i, line in enumerate(f):
                        parts = line.strip().split()
                        if len(parts) != 5:
                            issues.append(f"Invalid format in {label_file}:{i+1}")
                        else:
                            try:
                                cls_id, cx, cy, w, h = map(float, parts)
                                if not (0 <= cx <= 1 and 0 <= cy <= 1 and 0 <= w <= 1 and 0 <= h <= 1):
                                    issues.append(f"Invalid coordinates in {label_file}:{i+1}")
                                if not (0 <= cls_id <= 32):
                                    issues.append(f"Invalid class_id in {label_file}:{i+1}")
                            except ValueError:
                                issues.append(f"Non-numeric values in {label_file}:{i+1}")

    return issues

# Validate dataset
train_issues = validate_dataset('train/images/', 'train/labels/')
print(f"Training set validation: {len(train_issues)} issues found")

πŸ“„ License

This dataset is released under Apache 2.0 License.

🀝 Citation

If you use this dataset in your research, please cite:

@dataset{brand_eye_dataset_2024,
  title={Brand Eye Dataset: Automotive Brand Detection Dataset},
  author={Haydar Kadioğlu},
  year={2024},
  publisher={Hugging Face},
  url={https://huggingface.co/datasets/haydarkadioglu/brand-eye-dataset}
}

πŸ”— Related Resources

  • πŸ€– Trained Model: haydarkadioglu/brand-eye-yolo
  • πŸ“Š Training Analysis: See visualize.ipynb in model repository
  • πŸ’» Code Examples: Available in model repository
  • πŸ› Issues: Report issues in model repository

πŸ“ž Contact


🎯 Perfect for automotive industry applications, research, and brand recognition tasks!

This dataset represents months of careful curation and annotation work, providing high-quality training data for automotive brand detection systems.

Downloads last month
25

Models trained or fine-tuned on haydarkadioglu/brand-eye-dataset