You need to agree to share your contact information to access this dataset

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

By accessing this dataset, you agree to cite the associated paper in your research/publicationsβ€”see the "Citation" section for details. You agree to not use the dataset to conduct experiments that cause harm to human subjects.

Log in or Sign Up to review the conditions and access this dataset content.

Split_aloha_pour_tea

πŸ“‹ Overview

This dataset uses an extended format based on LeRobot and is fully compatible with LeRobot.

Robot Type: agilex_cobot_decoupled_magic | Codebase Version: v2.1 End-Effector Type: two_finger_gripper

🏠 Scene Types

This dataset covers the following scene types:

  • home
  • office

πŸ€– Atomic Actions

This dataset includes the following atomic actions:

  • grasp
  • place
  • pick
  • pour

πŸ“Š Dataset Statistics

Metric Value
Total Episodes 977
Total Frames 1305706
Total Tasks 5
Total Videos 2931
Total Chunks 1
Chunk Size 1000
FPS 30
Dataset Size 13.7GB

πŸ‘₯ Authors

Contributors

This dataset is contributed by:

πŸ”— Links

🏷️ Dataset Tags

  • RoboCOIN
  • LeRobot

🎯 Task Descriptions

Primary Tasks

pour tea into the teacup. grasp the brown teapot and pour the tea into the two brown teacups one by one, put the brown teapot back in its original place. grasp the brown teapot and pour the tea into the two white teacups one by one, put the brown teapot back in its original place. grasp the stainless steel teapot and pour the tea into the two stainless steel teacups one by one, put the stainless steel teapot back in its original place. grasp the blue porcelain teapot and pour the tea into the two blue porcelain teacups one by one, put the blue porcelain teapot back in its original place.

Sub-Tasks

This dataset includes 18 distinct subtasks:

  1. Pick up the teacup with the left gripper
  2. End
  3. Place the teacup in the center of view with the right gripper
  4. Pick up the teapot with the left gripper
  5. Pick up the teapot with the right gripper
  6. Abnormal
  7. Pick up the teacup with the right gripper
  8. Place the down the teapot with the left gripper
  9. Grasp the teapot with left gripper
  10. Put down the teapot with left gripper
  11. Pour tea into the teacup with right gripper
  12. Put down the teapot with right gripper
  13. Pour tea into the teacup with left gripper
  14. Pour tea into the teacup with the right gripper
  15. Grasp the teapot with right gripper
  16. Pour tea into the teacup with the left gripper
  17. Place the down the teapot with the right gripper
  18. null

πŸŽ₯ Camera Views

This dataset includes 3 camera views.

🏷️ Available Annotations

This dataset includes rich annotations to support diverse learning approaches:

Subtask Annotations

  • Subtask Segmentation: Fine-grained subtask segmentation and labeling

Scene Annotations

  • Scene-level Descriptions: Semantic scene classifications and descriptions

End-Effector Annotations

  • Direction: Movement direction classifications for robot end-effectors
  • Velocity: Velocity magnitude categorizations during manipulation
  • Acceleration: Acceleration magnitude classifications for motion analysis

Gripper Annotations

  • Gripper Mode: Open/close state annotations for gripper control
  • Gripper Activity: Activity state classifications (active/inactive)

Additional Features

  • End-Effector Simulation Pose: 6D pose information for end-effectors in simulation space
    • Available for both state and action
  • Gripper Opening Scale: Continuous gripper opening measurements
    • Available for both state and action

πŸ“‚ Data Splits

The dataset is organized into the following splits:

  • Training: Episodes 0:976

πŸ“ Dataset Structure

This dataset follows the LeRobot format and contains the following components:

Data Files

  • Videos: Compressed video files containing RGB camera observations
  • State Data: Robot joint positions, velocities, and other state information
  • Action Data: Robot action commands and trajectories
  • Metadata: Episode metadata, timestamps, and annotations

File Organization

  • Data Path Pattern: data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet
  • Video Path Pattern: videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4
  • Chunking: Data is organized into 1 chunk(s) of size 1000

Features Schema

The dataset includes the following features:

Visual Observations

  • observation.images.cam_high_rgb: video
    • FPS: 30
    • Codec: av1- observation.images.cam_left_wrist_rgb: video
    • FPS: 30
    • Codec: av1- observation.images.cam_right_wrist_rgb: video
    • FPS: 30
    • Codec: av1

State and Action- observation.state: float32- action: float32

Temporal Information

  • timestamp: float32
  • frame_index: int64
  • episode_index: int64
  • index: int64
  • task_index: int64

Annotations

  • subtask_annotation: int32
  • scene_annotation: int32

Motion Features

  • eef_sim_pose_state: float32
    • Dimensions: left_eef_pos_x, left_eef_pos_y, left_eef_pos_z, left_eef_ori_x, left_eef_ori_y, left_eef_ori_z, right_eef_pos_x, right_eef_pos_y, right_eef_pos_z, right_eef_ori_x, right_eef_ori_y, right_eef_ori_z
  • eef_sim_pose_action: float32
    • Dimensions: left_eef_pos_x, left_eef_pos_y, left_eef_pos_z, left_eef_ori_x, left_eef_ori_y, left_eef_ori_z, right_eef_pos_x, right_eef_pos_y, right_eef_pos_z, right_eef_ori_x, right_eef_ori_y, right_eef_ori_z
  • eef_direction_state: int32
    • Dimensions: left_eef_direction, right_eef_direction
  • eef_direction_action: int32
    • Dimensions: left_eef_direction, right_eef_direction
  • eef_velocity_state: int32
    • Dimensions: left_eef_velocity, right_eef_velocity
  • eef_velocity_action: int32
    • Dimensions: left_eef_velocity, right_eef_velocity
  • eef_acc_mag_state: int32
    • Dimensions: left_eef_acc_mag, right_eef_acc_mag
  • eef_acc_mag_action: int32
    • Dimensions: left_eef_acc_mag, right_eef_acc_mag

Gripper Features

  • gripper_open_scale_state: float32
    • Dimensions: left_gripper_open_scale, right_gripper_open_scale
  • gripper_open_scale_action: float32
    • Dimensions: left_gripper_open_scale, right_gripper_open_scale
  • gripper_mode_state: int32
    • Dimensions: left_gripper_mode, right_gripper_mode
  • gripper_mode_action: int32
    • Dimensions: left_gripper_mode, right_gripper_mode
  • gripper_activity_state: int32
    • Dimensions: left_gripper_activity, right_gripper_activity

Meta Information

The complete dataset metadata is available in meta/info.json:

{"codebase_version": "v2.1", "robot_type": "agilex_cobot_decoupled_magic", "total_episodes": 977, "total_frames": 1305706, "total_tasks": 5, "total_videos": 2931, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": {"train": "0:976"}, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": {"observation.images.cam_high_rgb": {"dtype": "video", "shape": [480, 640, 3], "names": ["height", "width", "channels"], "info": {"video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false}}, "observation.images.cam_left_wrist_rgb": {"dtype": "video", "shape": [480, 640, 3], "names": ["height", "width", "channels"], "info": {"video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false}}, "observation.images.cam_right_wrist_rgb": {"dtype": "video", "shape": [480, 640, 3], "names": ["height", "width", "channels"], "info": {"video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false}}, "observation.state": {"dtype": "float32", "shape": [26], "names": ["left_arm_joint_1_rad", "left_arm_joint_2_rad", "left_arm_joint_3_rad", "left_arm_joint_4_rad", "left_arm_joint_5_rad", "left_arm_joint_6_rad", "left_gripper_open", "left_eef_pos_x_m", "left_eef_pos_y_m", "left_eef_pos_z_m", "left_eef_rot_euler_x_rad", "left_eef_rot_euler_y_rad", "left_eef_rot_euler_z_rad", "right_arm_joint_1_rad", "right_arm_joint_2_rad", "right_arm_joint_3_rad", "right_arm_joint_4_rad", "right_arm_joint_5_rad", "right_arm_joint_6_rad", "right_gripper_open", "right_eef_pos_x_m", "right_eef_pos_y_m", "right_eef_pos_z_m", "right_eef_rot_euler_x_rad", "right_eef_rot_euler_y_rad", "right_eef_rot_euler_z_rad"]}, "action": {"dtype": "float32", "shape": [26], "names": ["left_arm_joint_1_rad", "left_arm_joint_2_rad", "left_arm_joint_3_rad", "left_arm_joint_4_rad", "left_arm_joint_5_rad", "left_arm_joint_6_rad", "left_gripper_open", "left_eef_pos_x_m", "left_eef_pos_y_m", "left_eef_pos_z_m", "left_eef_rot_euler_x_rad", "left_eef_rot_euler_y_rad", "left_eef_rot_euler_z_rad", "right_arm_joint_1_rad", "right_arm_joint_2_rad", "right_arm_joint_3_rad", "right_arm_joint_4_rad", "right_arm_joint_5_rad", "right_arm_joint_6_rad", "right_gripper_open", "right_eef_pos_x_m", "right_eef_pos_y_m", "right_eef_pos_z_m", "right_eef_rot_euler_x_rad", "right_eef_rot_euler_y_rad", "right_eef_rot_euler_z_rad"]}, "timestamp": {"dtype": "float32", "shape": [1], "names": null}, "frame_index": {"dtype": "int64", "shape": [1], "names": null}, "episode_index": {"dtype": "int64", "shape": [1], "names": null}, "index": {"dtype": "int64", "shape": [1], "names": null}, "task_index": {"dtype": "int64", "shape": [1], "names": null}, "subtask_annotation": {"names": null, "dtype": "int32", "shape": [5]}, "scene_annotation": {"names": null, "dtype": "int32", "shape": [1]}, "eef_sim_pose_state": {"names": ["left_eef_pos_x", "left_eef_pos_y", "left_eef_pos_z", "left_eef_ori_x", "left_eef_ori_y", "left_eef_ori_z", "right_eef_pos_x", "right_eef_pos_y", "right_eef_pos_z", "right_eef_ori_x", "right_eef_ori_y", "right_eef_ori_z"], "dtype": "float32", "shape": [12]}, "eef_sim_pose_action": {"names": ["left_eef_pos_x", "left_eef_pos_y", "left_eef_pos_z", "left_eef_ori_x", "left_eef_ori_y", "left_eef_ori_z", "right_eef_pos_x", "right_eef_pos_y", "right_eef_pos_z", "right_eef_ori_x", "right_eef_ori_y", "right_eef_ori_z"], "dtype": "float32", "shape": [12]}, "eef_direction_state": {"names": ["left_eef_direction", "right_eef_direction"], "dtype": "int32", "shape": [2]}, "eef_direction_action": {"names": ["left_eef_direction", "right_eef_direction"], "dtype": "int32", "shape": [2]}, "eef_velocity_state": {"names": ["left_eef_velocity", "right_eef_velocity"], "dtype": "int32", "shape": [2]}, "eef_velocity_action": {"names": ["left_eef_velocity", "right_eef_velocity"], "dtype": "int32", "shape": [2]}, "eef_acc_mag_state": {"names": ["left_eef_acc_mag", "right_eef_acc_mag"], "dtype": "int32", "shape": [2]}, "eef_acc_mag_action": {"names": ["left_eef_acc_mag", "right_eef_acc_mag"], "dtype": "int32", "shape": [2]}, "gripper_open_scale_state": {"names": ["left_gripper_open_scale", "right_gripper_open_scale"], "dtype": "float32", "shape": [2]}, "gripper_open_scale_action": {"names": ["left_gripper_open_scale", "right_gripper_open_scale"], "dtype": "float32", "shape": [2]}, "gripper_mode_state": {"names": ["left_gripper_mode", "right_gripper_mode"], "dtype": "int32", "shape": [2]}, "gripper_mode_action": {"names": ["left_gripper_mode", "right_gripper_mode"], "dtype": "int32", "shape": [2]}, "gripper_activity_state": {"names": ["left_gripper_activity", "right_gripper_activity"], "dtype": "int32", "shape": [2]}}}

Directory Structure

The dataset is organized as follows (showing leaf directories with first 5 files only):

Split_aloha_pour_tea_qced_hardlink/
β”œβ”€β”€ annotations/
β”‚   β”œβ”€β”€ eef_acc_mag_annotation.jsonl
β”‚   β”œβ”€β”€ eef_direction_annotation.jsonl
β”‚   β”œβ”€β”€ eef_velocity_annotation.jsonl
β”‚   β”œβ”€β”€ gripper_activity_annotation.jsonl
β”‚   β”œβ”€β”€ gripper_mode_annotation.jsonl
β”‚   └── (...)
β”œβ”€β”€ data/
β”‚   β”œβ”€β”€ chunk-000/
β”‚   β”‚   β”œβ”€β”€ episode_000000.parquet
β”‚   β”‚   β”œβ”€β”€ episode_000001.parquet
β”‚   β”‚   β”œβ”€β”€ episode_000002.parquet
β”‚   β”‚   β”œβ”€β”€ episode_000003.parquet
β”‚   β”‚   β”œβ”€β”€ episode_000004.parquet
β”‚   β”‚   └── (...)
β”‚   └── chunk-001/
β”‚       β”œβ”€β”€ episode_001000.parquet
β”‚       β”œβ”€β”€ episode_001001.parquet
β”‚       β”œβ”€β”€ episode_001002.parquet
β”‚       β”œβ”€β”€ episode_001003.parquet
β”‚       β”œβ”€β”€ episode_001004.parquet
β”‚       └── (...)
β”œβ”€β”€ meta/
β”‚   β”œβ”€β”€ episodes.jsonl
β”‚   β”œβ”€β”€ episodes_stats.jsonl
β”‚   β”œβ”€β”€ info.json
β”‚   └── tasks.jsonl
└── videos/
    β”œβ”€β”€ chunk-000/
    β”‚   β”œβ”€β”€ observation.images.cam_high_rgb/
    β”‚   β”‚   β”œβ”€β”€ episode_000000.mp4
    β”‚   β”‚   β”œβ”€β”€ episode_000001.mp4
    β”‚   β”‚   β”œβ”€β”€ episode_000002.mp4
    β”‚   β”‚   β”œβ”€β”€ episode_000003.mp4
    β”‚   β”‚   β”œβ”€β”€ episode_000004.mp4
    β”‚   β”‚   └── (...)
    β”‚   β”œβ”€β”€ observation.images.cam_left_wrist_rgb/
    β”‚   β”‚   β”œβ”€β”€ episode_000000.mp4
    β”‚   β”‚   β”œβ”€β”€ episode_000001.mp4
    β”‚   β”‚   β”œβ”€β”€ episode_000002.mp4
    β”‚   β”‚   β”œβ”€β”€ episode_000003.mp4
    β”‚   β”‚   β”œβ”€β”€ episode_000004.mp4
    β”‚   β”‚   └── (...)
    β”‚   └── observation.images.cam_right_wrist_rgb/
    β”‚       β”œβ”€β”€ episode_000000.mp4
    β”‚       β”œβ”€β”€ episode_000001.mp4
    β”‚       β”œβ”€β”€ episode_000002.mp4
    β”‚       β”œβ”€β”€ episode_000003.mp4
    β”‚       β”œβ”€β”€ episode_000004.mp4
    β”‚       └── (...)
    └── chunk-001/
        β”œβ”€β”€ observation.images.cam_high_rgb/
        β”‚   β”œβ”€β”€ episode_001000.mp4
        β”‚   β”œβ”€β”€ episode_001001.mp4
        β”‚   β”œβ”€β”€ episode_001002.mp4
        β”‚   β”œβ”€β”€ episode_001003.mp4
        β”‚   β”œβ”€β”€ episode_001004.mp4
        β”‚   └── (...)
        β”œβ”€β”€ observation.images.cam_left_wrist_rgb/
        β”‚   β”œβ”€β”€ episode_001000.mp4
        β”‚   β”œβ”€β”€ episode_001001.mp4
        β”‚   β”œβ”€β”€ episode_001002.mp4
        β”‚   β”œβ”€β”€ episode_001003.mp4
        β”‚   β”œβ”€β”€ episode_001004.mp4
        β”‚   └── (...)
        └── observation.images.cam_right_wrist_rgb/
            β”œβ”€β”€ episode_001000.mp4
            β”œβ”€β”€ episode_001001.mp4
            β”œβ”€β”€ episode_001002.mp4
            β”œβ”€β”€ episode_001003.mp4
            β”œβ”€β”€ episode_001004.mp4
            └── (...)

πŸ“ž Contact and Support

For questions, issues, or feedback regarding this dataset, please contact:

  • Email: None For questions, issues, or feedback regarding this dataset, please contact us.

Support

For technical support, please open an issue on our GitHub repository.

πŸ“„ License

This dataset is released under the apache-2.0 license.

Please refer to the LICENSE file for full license terms and conditions.

πŸ“š Citation

If you use this dataset in your research, please cite:

@article{robocoin,
    title={RoboCOIN: An Open-Sourced Bimanual Robotic Data Collection for Integrated Manipulation},
    author={Shihan Wu, Xuecheng Liu, Shaoxuan Xie, Pengwei Wang, Xinghang Li, Bowen Yang, Zhe Li, Kai Zhu, Hongyu Wu, Yiheng Liu, Zhaoye Long, Yue Wang, Chong Liu, Dihan Wang, Ziqiang Ni, Xiang Yang, You Liu, Ruoxuan Feng, Runtian Xu, Lei Zhang, Denghang Huang, Chenghao Jin, Anlan Yin, Xinlong Wang, Zhenguo Sun, Junkai Zhao, Mengfei Du, Mingyu Cao, Xiansheng Chen, Hongyang Cheng, Xiaojie Zhang, Yankai Fu, Ning Chen, Cheng Chi, Sixiang Chen, Huaihai Lyu, Xiaoshuai Hao, Yequan Wang, Bo Lei, Dong Liu, Xi Yang, Yance Jiao, Tengfei Pan, Yunyan Zhang, Songjing Wang, Ziqian Zhang, Xu Liu, Ji Zhang, Caowei Meng, Zhizheng Zhang, Jiyang Gao, Song Wang, Xiaokun Leng, Zhiqiang Xie, Zhenzhen Zhou, Peng Huang, Wu Yang, Yandong Guo, Yichao Zhu, Suibing Zheng, Hao Cheng, Xinmin Ding, Yang Yue, Huanqian Wang, Chi Chen, Jingrui Pang, YuXi Qian, Haoran Geng, Lianli Gao, Haiyuan Li, Bin Fang, Gao Huang, Yaodong Yang, Hao Dong, He Wang, Hang Zhao, Yadong Mu, Di Hu, Hao Zhao, Tiejun Huang, Shanghang Zhang, Yonghua Lin, Zhongyuan Wang and Guocai Yao},
    journal={arXiv preprint arXiv:2511.17441},
    url = {https://arxiv.org/abs/2511.17441},
    year={2025}
    }

Additional References

If you use this dataset, please also consider citing:

πŸ“Œ Version Information

Version History

  • v1.0.0 (2025-11): Initial release
Downloads last month
1,969

Collection including RoboCOIN/Split_aloha_pour_tea