game_id
string | nxer_name
string | neuron_id
int64 | branch_id
int64 | branch_pot
float64 | branch_pot_abs
float64 | plateau_pot
float64 | branch_thresh
float64 | plateau_decay
float64 | above_threshold
int64 | has_plateau
int64 |
|---|---|---|---|---|---|---|---|---|---|---|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 0
| 0
| -0
| 0
| 0
| 0.713
| 620.767
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 0
| 1
| 0.00001
| 0.00001
| -0.509
| 0.885
| 610.972
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 0
| 2
| 0
| 0
| 0
| 0.792
| 657.884
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 0
| 3
| 0
| 0
| 0
| 0.755
| 689.749
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 1
| 0
| 0
| 0
| 0
| 0.731
| 552.582
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 1
| 1
| 0
| 0
| 0
| 0.754
| 487.593
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 1
| 2
| 0
| 0
| 0
| 0.855
| 595.78
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 1
| 3
| 0
| 0
| 0
| 0.718
| 500.14
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 2
| 0
| -0
| 0
| 0
| 0.678
| 563.882
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 2
| 1
| 0
| 0
| 0
| 0.804
| 519.314
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 2
| 2
| 0
| 0
| 0
| 0.813
| 475.718
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 2
| 3
| 0
| 0
| 0
| 0.789
| 537.406
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 3
| 0
| -0
| 0
| 0
| 0.754
| 616.294
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 3
| 1
| 0
| 0
| 0
| 0.795
| 469.761
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 3
| 2
| 0
| 0
| 0
| 0.647
| 541.983
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 3
| 3
| 0
| 0
| 0
| 0.892
| 517.728
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 4
| 0
| -0
| 0
| 0
| 0.749
| 525.451
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 4
| 1
| 0
| 0
| 0
| 0.668
| 557.653
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 4
| 2
| -0
| 0
| 0
| 0.775
| 481.096
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 4
| 3
| -0
| 0
| 0
| 0.748
| 475.83
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 5
| 0
| -0
| 0
| 0
| 0.801
| 608.656
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 5
| 1
| -0
| 0
| 0
| 0.734
| 497.954
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 5
| 2
| -0
| 0
| 0
| 0.663
| 523.745
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 5
| 3
| 0
| 0
| 0
| 0.801
| 581.57
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 6
| 0
| 0
| 0
| 0
| 0.798
| 527.448
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 6
| 1
| 0
| 0
| 0
| 0.832
| 612.051
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 6
| 2
| -0
| 0
| 0
| 0.637
| 589.677
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 6
| 3
| 0
| 0
| 0
| 0.729
| 551.23
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 7
| 0
| 0
| 0
| 0
| 0.845
| 476.905
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 7
| 1
| 0
| 0
| 0
| 0.679
| 587.717
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 7
| 2
| -0
| 0
| 0
| 0.779
| 684.565
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 7
| 3
| 0
| 0
| 0
| 0.656
| 537.443
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 8
| 0
| 0
| 0
| 0
| 0.83
| 553.297
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 8
| 1
| -0
| 0
| 0.419
| 0.608
| 624.58
| 0
| 1
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 8
| 2
| 0
| 0
| 0
| 0.797
| 472.587
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 8
| 3
| 0
| 0
| 0
| 0.695
| 643.831
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 9
| 0
| -0.00816
| 0.00816
| 0
| 0.826
| 615.17
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 9
| 1
| -0.00059
| 0.00059
| 0
| 0.692
| 662.596
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 9
| 2
| -0.00113
| 0.00113
| 0
| 0.824
| 636.119
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 9
| 3
| -0.00173
| 0.00173
| 0
| 0.814
| 536.855
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 10
| 0
| 0
| 0
| 0
| 0.701
| 673.118
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 10
| 1
| 0
| 0
| 0
| 0.83
| 583.282
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 10
| 2
| 0
| 0
| 0
| 0.612
| 532.316
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 10
| 3
| 0
| 0
| 0
| 0.84
| 608.957
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 11
| 0
| 0
| 0
| 0
| 0.65
| 688.438
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 11
| 1
| 0
| 0
| 0
| 0.779
| 508.611
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 11
| 2
| 0
| 0
| 0
| 0.679
| 476.826
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 11
| 3
| 0
| 0
| 0
| 0.787
| 505.663
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 12
| 0
| -0.00001
| 0.00001
| 0
| 0.695
| 690.668
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 12
| 1
| 0.00001
| 0.00001
| 0
| 0.733
| 529.41
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 12
| 2
| 0.00001
| 0.00001
| 0
| 0.781
| 495.733
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 12
| 3
| 0.00001
| 0.00001
| 0
| 0.789
| 657.756
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 13
| 0
| 0
| 0
| 0
| 0.676
| 643.326
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 13
| 1
| 0
| 0
| 0
| 0.777
| 474.371
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 13
| 2
| 0
| 0
| 0
| 0.881
| 534.519
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 13
| 3
| 0
| 0
| 0
| 0.798
| 641.851
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 14
| 0
| 0
| 0
| 0
| 0.74
| 512.322
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 14
| 1
| 0
| 0
| 0
| 0.739
| 657.008
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 14
| 2
| 0
| 0
| 0
| 0.817
| 660.286
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 14
| 3
| 0
| 0
| 0
| 0.717
| 535.673
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 15
| 0
| 0
| 0
| 0
| 0.63
| 686.744
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 15
| 1
| 0
| 0
| 0
| 0.629
| 608.475
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 15
| 2
| 0
| 0
| 0
| 0.744
| 631.014
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 15
| 3
| 0
| 0
| 0
| 0.739
| 616.281
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 16
| 0
| -0
| 0
| 0
| 0.798
| 687.727
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 16
| 1
| 0
| 0
| 0
| 0.837
| 496.269
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 16
| 2
| 0
| 0
| 0
| 0.672
| 494.597
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 16
| 3
| 0
| 0
| 0
| 0.762
| 572.326
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 17
| 0
| 0
| 0
| 0
| 0.627
| 479.23
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 17
| 1
| 0
| 0
| 0
| 0.848
| 485.647
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 17
| 2
| 0
| 0
| 0
| 0.852
| 677.137
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 17
| 3
| 0
| 0
| 0
| 0.656
| 690.773
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 18
| 0
| 0
| 0
| 0
| 0.613
| 573.819
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 18
| 1
| 0
| 0
| 0
| 0.771
| 496.505
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 18
| 2
| 0
| 0
| 0
| 0.665
| 465.654
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 18
| 3
| 0
| 0
| 0
| 0.607
| 524.477
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 19
| 0
| -0
| 0
| 0
| 0.659
| 550.292
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 19
| 1
| 0
| 0
| 0
| 0.87
| 589.831
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 19
| 2
| 0
| 0
| 0
| 0.657
| 664.384
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 19
| 3
| 0
| 0
| 0
| 0.841
| 686.703
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 20
| 0
| 0.0001
| 0.0001
| 0
| 0.851
| 664.337
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 20
| 1
| -0
| 0
| 0
| 0.706
| 575.549
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 20
| 2
| -0
| 0
| 0
| 0.83
| 551.524
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
A
| 20
| 3
| 0
| 0
| 0
| 0.798
| 543.114
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
B
| 0
| 0
| 0
| 0
| 0
| 0.482
| 509.028
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
B
| 0
| 1
| 0
| 0
| 0
| 0.67
| 547.228
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
B
| 0
| 2
| 0
| 0
| 0
| 0.471
| 466.697
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
B
| 0
| 3
| 0
| 0
| 0
| 0.58
| 558.45
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
B
| 1
| 0
| 0.00025
| 0.00025
| 0
| 0.632
| 578.352
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
B
| 1
| 1
| 0
| 0
| 0
| 0.555
| 552.708
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
B
| 1
| 2
| 0
| 0
| 0
| 0.621
| 483.72
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
B
| 1
| 3
| 0
| 0
| 0
| 0.634
| 541.414
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
B
| 2
| 0
| 0.181
| 0.181
| 0.535
| 0.591
| 505.995
| 0
| 1
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
B
| 2
| 1
| -0.00001
| 0.00001
| 0
| 0.47
| 542.715
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
B
| 2
| 2
| 0
| 0
| 0
| 0.5
| 516.619
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
B
| 2
| 3
| 0
| 0
| 0
| 0.457
| 444.101
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
B
| 3
| 0
| 0.00018
| 0.00018
| 0
| 0.5
| 528.295
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
B
| 3
| 1
| 0.00001
| 0.00001
| 0
| 0.58
| 521.027
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
B
| 3
| 2
| 0
| 0
| 0
| 0.532
| 594.083
| 0
| 0
|
TestGame_100_1857002674_2025-12-04T22-12-01Z
|
B
| 3
| 3
| 0
| 0
| 0
| 0.506
| 496.49
| 0
| 0
|
NeuraxonLife2-1M: Artificial Life Neuraxon Neural Network Simulation Dataset
Dataset Description
The NeuraxonLife 2.0 1M Dataset contains detailed simulation data from an artificial life environment where autonomous agents ("NxErs") evolve biologically-plausible Neuraxon neural networks. This dataset captures the complete neural architecture, synaptic connectivity, neuromodulation states, and behavioral performance metrics of evolved artificial organisms.
Dataset Summary
This dataset provides a unique window into how neural networks evolve under survival pressure in a simulated ecosystem. Each NxEr (Neuraxon Entity) is an autonomous agent with:
- A Neuraxon neural network (https://www.researchgate.net/publication/397331336_Neuraxon ) with dendritic computation
- Multi-timescale synaptic plasticity (fast, slow, meta)
- Four neuromodulatory systems (dopamine, serotonin, acetylcholine, norepinephrine)
- Behavioral capabilities (movement, foraging, mating)
- Evolutionary fitness tracking
Supported Tasks
- Neural Architecture Analysis: Study evolved network topologies
- Synaptic Weight Distribution: Analyze learned connection patterns
- Neuromodulation Research: Investigate modulator dynamics
- Fitness Prediction: Predict agent fitness from neural parameters
- Evolutionary Dynamics: Track neural evolution across generations
Dataset Structure
The dataset consists of four interconnected tables stored as separate Parquet files:
/
βββ neuraxonLife2-1M_nxers.parquet # Agent-level data
βββ neuraxonLife2-1M_neurons.parquet # Neuron-level data
βββ neuraxonLife2-1M_synapses.parquet # Synapse-level data
βββ neuraxonLife2-1M_branches.parquet # Dendritic branch data
βββ neuraxonLife2-1M_manifest.json # Dataset metadata
βββ README.md # This file
Data Tables
1. NxErs Table (neuraxonLife2-1M_nxers.parquet)
Agent-level data containing identity, attributes, neural network parameters, and performance metrics.
| Column | Type | Description |
|---|---|---|
| Identifiers | ||
game_id |
string | Unique game/simulation identifier |
nxer_id |
int | Agent ID within the game |
nxer_name |
string | Agent name |
| Game Context | ||
game_step |
int | Current simulation tick |
game_births |
int | Total births in game |
game_deaths |
int | Total deaths in game |
game_index |
int | Game sequence index |
| World Configuration | ||
NxWorldSize |
int | World grid size |
NxWorldSea |
float | Sea proportion (0-1) |
NxWorldRocks |
float | Rock proportion (0-1) |
MaxFood |
int | Maximum food items |
MaxNeurons |
int | Maximum neurons per agent |
| Basic Attributes | ||
is_male |
int | Gender (1=male, 0=female) |
gender |
string | "Male" or "Female" |
can_land |
int | Can traverse land (0/1) |
can_sea |
int | Can traverse sea (0/1) |
terrain |
string | "Land", "Sea", or "Amphibious" |
alive |
int | Alive status (0/1) |
food |
float | Current food/energy level |
| Color | ||
color_r |
int | Red component (0-255) |
color_g |
int | Green component (0-255) |
color_b |
int | Blue component (0-255) |
| Sensory | ||
vision_range |
int | Vision distance in tiles |
smell_radius |
int | Smell detection radius |
heading |
int | Current heading direction |
clan_id |
int | Clan affiliation (-1 if none) |
| Position | ||
pos_x |
int | Current X position |
pos_y |
int | Current Y position |
last_pos_x |
int | Previous X position |
last_pos_y |
int | Previous Y position |
| Lifecycle | ||
born_ts |
float | Birth timestamp |
died_ts |
float | Death timestamp (0 if alive) |
ticks_per_action |
int | Action frequency |
visited_count |
int | Unique positions visited |
| Behavioral State | ||
is_harvesting |
int | Currently harvesting (0/1) |
is_mating |
int | Currently mating (0/1) |
dopamine_boost_ticks |
int | Dopamine boost duration |
| Lineage | ||
has_parents |
int | Has known parents (0/1) |
parent_count |
int | Number of parents |
| Neural Inputs | ||
last_input_0 to last_input_5 |
float | Last sensory inputs |
last_output_o4 |
int | Last O4 output |
| Performance Stats | ||
food_found |
float | Total food discovered |
food_taken |
float | Total food consumed |
explored |
int | Tiles explored |
time_lived |
float | Lifetime in seconds |
mates |
int | Successful matings |
energy_eff |
float | Energy efficiency score |
temporal_sync |
float | Temporal synchronization |
fitness |
float | Overall fitness score |
| Network Topology | ||
n_input |
int | Input neuron count |
n_hidden |
int | Hidden neuron count |
n_output |
int | Output neuron count |
n_total |
int | Total neuron count |
n_synapses |
int | Total synapse count |
conn_density |
float | Connection density |
conn_prob |
float | Connection probability |
small_world_k |
int | Small-world k parameter |
rewire_prob |
float | Rewiring probability |
pref_attach |
int | Preferential attachment (0/1) |
max_axon_delay |
float | Maximum axonal delay |
| Network Time | ||
net_dt |
float | Simulation timestep |
net_min_dt |
float | Minimum timestep |
net_max_dt |
float | Maximum timestep |
activity_threshold |
float | Activity threshold |
| Neuron Parameters | ||
membrane_tau |
float | Membrane time constant |
thresh_exc |
float | Excitatory threshold |
thresh_inh |
float | Inhibitory threshold |
adaptation |
float | Adaptation rate |
spont_rate |
float | Spontaneous firing rate |
health_decay |
float | Health decay rate |
| Dendritic Parameters | ||
n_branches |
int | Branches per neuron |
branch_thresh |
float | Branch threshold |
plateau_decay |
float | Plateau decay constant |
| Synaptic Time Constants | ||
tau_fast |
float | Fast synapse tau |
tau_slow |
float | Slow synapse tau |
tau_meta |
float | Metaplasticity tau |
tau_ltp |
float | LTP time constant |
tau_ltd |
float | LTD time constant |
| Weight Initialization | ||
w_fast_min/max |
float | Fast weight bounds |
w_slow_min/max |
float | Slow weight bounds |
w_meta_min/max |
float | Meta weight bounds |
| Learning & Plasticity | ||
learn_rate |
float | Base learning rate |
stdp_window |
float | STDP window size |
plast_thresh |
float | Plasticity threshold |
assoc_strength |
float | Associativity strength |
| Structural Plasticity | ||
syn_integrity |
float | Integrity threshold |
syn_form_prob |
float | Synapse formation prob |
syn_death_prob |
float | Synapse death prob |
neuron_death |
float | Neuron death threshold |
| Neuromodulation Baselines | ||
da_base |
float | Dopamine baseline |
ser_base |
float | Serotonin baseline |
ach_base |
float | Acetylcholine baseline |
ne_base |
float | Norepinephrine baseline |
| Neuromodulation Thresholds | ||
da_high/low |
float | Dopamine thresholds |
ser_high/low |
float | Serotonin thresholds |
ach_high/low |
float | Acetylcholine thresholds |
ne_high/low |
float | Norepinephrine thresholds |
neuromod_decay |
float | Modulator decay rate |
diffusion |
float | Diffusion rate |
| Oscillators | ||
osc_low/mid/high |
float | Oscillator frequencies |
osc_strength |
float | Oscillator strength |
phase_coupling |
float | Phase coupling strength |
| Energy Metabolism | ||
energy_base |
float | Baseline energy |
firing_cost |
float | Firing energy cost |
plast_cost |
float | Plasticity energy cost |
metabolic_rate |
float | Metabolic rate |
recovery_rate |
float | Energy recovery rate |
| Homeostasis | ||
target_fire_rate |
float | Target firing rate |
homeo_plast_rate |
float | Homeostatic plasticity |
| AIGarth/ITU | ||
itu_radius |
int | ITU circle radius |
evol_interval |
int | Evolution interval |
fit_temporal_w |
float | Temporal fitness weight |
fit_energy_w |
float | Energy fitness weight |
fit_pattern_w |
float | Pattern fitness weight |
| Current Neuromodulators | ||
curr_da |
float | Current dopamine |
curr_ser |
float | Current serotonin |
curr_ach |
float | Current acetylcholine |
curr_ne |
float | Current norepinephrine |
| Network State | ||
net_time |
float | Network simulation time |
net_steps |
int | Network step count |
branching_ratio |
float | Criticality measure |
energy_consumed |
float | Total energy consumed |
itu_circle_count |
int | ITU circle count |
2. Neurons Table (neuraxonLife2-1M_neurons.parquet)
Individual neuron data within each agent's neural network.
| Column | Type | Description |
|---|---|---|
game_id |
string | Game identifier |
nxer_name |
string | Parent agent name |
neuron_id |
int | Neuron ID |
type |
string | Neuron type ("input", "hidden", "output") |
type_from_data |
string | Type from raw data |
| Core State | ||
membrane_pot |
float | Membrane potential |
trinary |
int | Trinary state (-1, 0, 1) |
trinary_label |
string | "Inhibitory", "Neutral", "Excitatory" |
adaptation |
float | Adaptation level |
health |
float | Neuron health (0-1) |
is_active |
int | Active status (0/1) |
energy |
float | Energy level |
| Oscillation | ||
phase |
float | Current phase |
nat_freq |
float | Natural frequency |
intrinsic_ts |
float | Intrinsic timescale |
| ITU | ||
circle_id |
int | ITU circle ID (-1 if none) |
neuron_fitness |
float | Neuron fitness score |
| Individual Parameters | ||
ind_membrane_tau |
float | Individual membrane tau |
ind_thresh_exc |
float | Individual excitatory threshold |
ind_thresh_inh |
float | Individual inhibitory threshold |
ind_adaptation |
float | Individual adaptation rate |
ind_spont_rate |
float | Individual spontaneous rate |
ind_health_decay |
float | Individual health decay |
ind_energy_base |
float | Individual energy baseline |
ind_firing_cost |
float | Individual firing cost |
ind_plast_cost |
float | Individual plasticity cost |
ind_metabolic |
float | Individual metabolic rate |
ind_recovery |
float | Individual recovery rate |
| Dendritic Statistics | ||
n_branches |
int | Number of dendritic branches |
branch_pot_mean/std/min/max |
float | Branch potential statistics |
plateau_mean/max |
float | Plateau potential statistics |
branch_thresh_mean/std |
float | Branch threshold statistics |
plateau_decay_mean |
float | Mean plateau decay |
3. Synapses Table (neuraxonLife2-1M_synapses.parquet)
Synaptic connection data between neurons.
| Column | Type | Description |
|---|---|---|
game_id |
string | Game identifier |
nxer_name |
string | Parent agent name |
pre_id |
int | Presynaptic neuron ID |
post_id |
int | Postsynaptic neuron ID |
| Weights | ||
w_fast |
float | Fast synaptic weight |
w_slow |
float | Slow synaptic weight |
w_meta |
float | Meta-plasticity weight |
w_total |
float | w_fast + w_slow |
w_abs |
float | |w_fast| + |w_slow| |
w_fast_abs |
float | |w_fast| |
w_slow_abs |
float | |w_slow| |
w_meta_abs |
float | |w_meta| |
| Flags | ||
is_silent |
int | Silent synapse (0/1) |
is_modulatory |
int | Modulatory synapse (0/1) |
syn_type |
string | Synapse type string |
is_ionotropic_fast |
int | Fast ionotropic (0/1) |
is_ionotropic_slow |
int | Slow ionotropic (0/1) |
is_metabotropic |
int | Metabotropic (0/1) |
| Properties | ||
integrity |
float | Synapse integrity (0-1) |
axon_delay |
float | Axonal delay |
learn_mod |
float | Learning rate modifier |
delta_w |
float | Potential weight change |
| Individual Time Constants | ||
ind_tau_fast |
float | Individual tau fast |
ind_tau_slow |
float | Individual tau slow |
ind_tau_meta |
float | Individual tau meta |
ind_tau_ltp |
float | Individual tau LTP |
ind_tau_ltd |
float | Individual tau LTD |
ind_learn_rate |
float | Individual learning rate |
ind_plast_thresh |
float | Individual plasticity threshold |
| Derived Metrics | ||
tau_ratio_fast_slow |
float | tau_fast / tau_slow |
tau_ratio_ltp_ltd |
float | tau_ltp / tau_ltd |
4. Branches Table (neuraxonLife2-1M_branches.parquet)
Dendritic branch data for detailed dendritic computation.
| Column | Type | Description |
|---|---|---|
game_id |
string | Game identifier |
nxer_name |
string | Parent agent name |
neuron_id |
int | Parent neuron ID |
branch_id |
int | Branch ID |
branch_pot |
float | Branch potential |
branch_pot_abs |
float | |branch_pot| |
plateau_pot |
float | Plateau potential |
branch_thresh |
float | Branch threshold |
plateau_decay |
float | Plateau decay constant |
above_threshold |
int | Above threshold (0/1) |
has_plateau |
int | Has plateau (0/1) |
Relationships Between Tables
NxErs (1) βββββββ¬βββββββββ (N) Neurons
β
ββββββββββ (N) Synapses
Neurons (1) ββββββββββββββ (N) Branches
- NxErs β Neurons: One NxEr contains multiple neurons (join on
game_id+nxer_name) - NxErs β Synapses: One NxEr contains multiple synapses (join on
game_id+nxer_name) - Neurons β Branches: One neuron contains multiple dendritic branches (join on
game_id+nxer_name+neuron_id) - Synapses β Neurons:
pre_idandpost_idreferenceneuron_idwithin the same NxEr
Usage
Loading with Python (pandas)
import pandas as pd
# Load individual tables
nxers = pd.read_parquet('neuraxonLife2-1M_nxers.parquet')
neurons = pd.read_parquet('neuraxonLife2-1M_neurons.parquet')
synapses = pd.read_parquet('neuraxonLife2-1M_synapses.parquet')
branches = pd.read_parquet('neuraxonLife2-1M_branches.parquet')
# Example: Get all neurons for a specific agent
agent_neurons = neurons[neurons['nxer_name'] == 'NxEr_42']
# Example: Analyze fitness vs network topology
import matplotlib.pyplot as plt
plt.scatter(nxers['n_synapses'], nxers['fitness'])
plt.xlabel('Number of Synapses')
plt.ylabel('Fitness Score')
plt.show()
Loading with Hugging Face Datasets
from datasets import load_dataset
# Load from Hugging Face Hub
dataset = load_dataset("DavidVivancos/NeuraxonLife2-1M")
# Access tables
nxers = dataset['nxers']
neurons = dataset['neurons']
Example Analyses
1. Fitness Prediction
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
features = ['n_synapses', 'conn_density', 'curr_da', 'curr_ser',
'membrane_tau', 'learn_rate', 'n_hidden']
X = nxers[features]
y = nxers['fitness']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
model = RandomForestRegressor()
model.fit(X_train, y_train)
print(f"RΒ² Score: {model.score(X_test, y_test):.3f}")
2. Synaptic Weight Analysis
# Weight distribution by synapse type
synapses.groupby('syn_type')['w_fast'].describe()
# Excitatory vs inhibitory balance
exc_weights = synapses[synapses['w_fast'] > 0]['w_fast'].sum()
inh_weights = synapses[synapses['w_fast'] < 0]['w_fast'].abs().sum()
print(f"E/I Ratio: {exc_weights / inh_weights:.2f}")
3. Network Topology
import networkx as nx
# Build graph for one agent
agent_synapses = synapses[synapses['nxer_name'] == 'NxEr_42']
G = nx.DiGraph()
for _, syn in agent_synapses.iterrows():
G.add_edge(syn['pre_id'], syn['post_id'], weight=syn['w_fast'])
# Analyze topology
print(f"Clustering coefficient: {nx.average_clustering(G):.3f}")
print(f"Average path length: {nx.average_shortest_path_length(G):.3f}")
Dataset Creation
This dataset was generated using the Neuraxon Artificial Life simulation Research framework 2.0.
The extraction process:
- 1000s of Test Games where performed, that saved 1000s of json files
- Then Loading game state JSON files from simulation runs
- Extracting hierarchical data (agents β neurons β synapses β branches)
- Converting to columnar Parquet format with Snappy compression
- Validating data integrity and relationships
Citation
If you use this dataset, please cite:
@dataset{NeuraxonLife2-1M,
title={Neuraxon: Artificial Life 2.0 BioInspired Neural Network Simulation 1M Dataset},
author={Vivancos, David and Sanchez, Jose},
year={2025},
publisher={Hugging Face},
url={https://huggingface.co/datasets/DavidVivancos/NeuraxonLife2-1M}
}
License
This dataset is released under the CC BY 4.0 license.
Additional Information
Authors
- David Vivancos / Artificiology Research https://artificiology.com/ - Qubic Science https://qubic.org/
- Dr. Jose Sanchez / UNIR - Qubic Science https://qubic.org/
Dataset Curators
- David Vivancos / Artificiology Research https://artificiology.com/ - Qubic Science https://qubic.org/
- Dr. Jose Sanchez / UNIR - Qubic Science https://qubic.org/
Version History
- v1.0.0 (2025): Initial release
Contact
For questions or issues, please open a GitHub issue here https://github.com/DavidVivancos/Neuraxon or contact [[email protected]].
- Downloads last month
- 8