Dataset Viewer
Auto-converted to Parquet Duplicate
game_id
string
nxer_name
string
neuron_id
int64
branch_id
int64
branch_pot
float64
branch_pot_abs
float64
plateau_pot
float64
branch_thresh
float64
plateau_decay
float64
above_threshold
int64
has_plateau
int64
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
0
0
-0
0
0
0.713
620.767
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
0
1
0.00001
0.00001
-0.509
0.885
610.972
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
0
2
0
0
0
0.792
657.884
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
0
3
0
0
0
0.755
689.749
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
1
0
0
0
0
0.731
552.582
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
1
1
0
0
0
0.754
487.593
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
1
2
0
0
0
0.855
595.78
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
1
3
0
0
0
0.718
500.14
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
2
0
-0
0
0
0.678
563.882
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
2
1
0
0
0
0.804
519.314
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
2
2
0
0
0
0.813
475.718
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
2
3
0
0
0
0.789
537.406
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
3
0
-0
0
0
0.754
616.294
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
3
1
0
0
0
0.795
469.761
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
3
2
0
0
0
0.647
541.983
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
3
3
0
0
0
0.892
517.728
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
4
0
-0
0
0
0.749
525.451
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
4
1
0
0
0
0.668
557.653
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
4
2
-0
0
0
0.775
481.096
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
4
3
-0
0
0
0.748
475.83
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
5
0
-0
0
0
0.801
608.656
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
5
1
-0
0
0
0.734
497.954
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
5
2
-0
0
0
0.663
523.745
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
5
3
0
0
0
0.801
581.57
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
6
0
0
0
0
0.798
527.448
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
6
1
0
0
0
0.832
612.051
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
6
2
-0
0
0
0.637
589.677
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
6
3
0
0
0
0.729
551.23
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
7
0
0
0
0
0.845
476.905
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
7
1
0
0
0
0.679
587.717
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
7
2
-0
0
0
0.779
684.565
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
7
3
0
0
0
0.656
537.443
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
8
0
0
0
0
0.83
553.297
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
8
1
-0
0
0.419
0.608
624.58
0
1
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
8
2
0
0
0
0.797
472.587
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
8
3
0
0
0
0.695
643.831
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
9
0
-0.00816
0.00816
0
0.826
615.17
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
9
1
-0.00059
0.00059
0
0.692
662.596
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
9
2
-0.00113
0.00113
0
0.824
636.119
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
9
3
-0.00173
0.00173
0
0.814
536.855
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
10
0
0
0
0
0.701
673.118
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
10
1
0
0
0
0.83
583.282
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
10
2
0
0
0
0.612
532.316
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
10
3
0
0
0
0.84
608.957
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
11
0
0
0
0
0.65
688.438
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
11
1
0
0
0
0.779
508.611
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
11
2
0
0
0
0.679
476.826
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
11
3
0
0
0
0.787
505.663
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
12
0
-0.00001
0.00001
0
0.695
690.668
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
12
1
0.00001
0.00001
0
0.733
529.41
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
12
2
0.00001
0.00001
0
0.781
495.733
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
12
3
0.00001
0.00001
0
0.789
657.756
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
13
0
0
0
0
0.676
643.326
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
13
1
0
0
0
0.777
474.371
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
13
2
0
0
0
0.881
534.519
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
13
3
0
0
0
0.798
641.851
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
14
0
0
0
0
0.74
512.322
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
14
1
0
0
0
0.739
657.008
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
14
2
0
0
0
0.817
660.286
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
14
3
0
0
0
0.717
535.673
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
15
0
0
0
0
0.63
686.744
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
15
1
0
0
0
0.629
608.475
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
15
2
0
0
0
0.744
631.014
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
15
3
0
0
0
0.739
616.281
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
16
0
-0
0
0
0.798
687.727
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
16
1
0
0
0
0.837
496.269
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
16
2
0
0
0
0.672
494.597
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
16
3
0
0
0
0.762
572.326
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
17
0
0
0
0
0.627
479.23
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
17
1
0
0
0
0.848
485.647
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
17
2
0
0
0
0.852
677.137
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
17
3
0
0
0
0.656
690.773
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
18
0
0
0
0
0.613
573.819
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
18
1
0
0
0
0.771
496.505
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
18
2
0
0
0
0.665
465.654
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
18
3
0
0
0
0.607
524.477
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
19
0
-0
0
0
0.659
550.292
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
19
1
0
0
0
0.87
589.831
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
19
2
0
0
0
0.657
664.384
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
19
3
0
0
0
0.841
686.703
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
20
0
0.0001
0.0001
0
0.851
664.337
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
20
1
-0
0
0
0.706
575.549
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
20
2
-0
0
0
0.83
551.524
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
A
20
3
0
0
0
0.798
543.114
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
B
0
0
0
0
0
0.482
509.028
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
B
0
1
0
0
0
0.67
547.228
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
B
0
2
0
0
0
0.471
466.697
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
B
0
3
0
0
0
0.58
558.45
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
B
1
0
0.00025
0.00025
0
0.632
578.352
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
B
1
1
0
0
0
0.555
552.708
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
B
1
2
0
0
0
0.621
483.72
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
B
1
3
0
0
0
0.634
541.414
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
B
2
0
0.181
0.181
0.535
0.591
505.995
0
1
TestGame_100_1857002674_2025-12-04T22-12-01Z
B
2
1
-0.00001
0.00001
0
0.47
542.715
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
B
2
2
0
0
0
0.5
516.619
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
B
2
3
0
0
0
0.457
444.101
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
B
3
0
0.00018
0.00018
0
0.5
528.295
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
B
3
1
0.00001
0.00001
0
0.58
521.027
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
B
3
2
0
0
0
0.532
594.083
0
0
TestGame_100_1857002674_2025-12-04T22-12-01Z
B
3
3
0
0
0
0.506
496.49
0
0
End of preview. Expand in Data Studio

NeuraxonLife2-1M: Artificial Life Neuraxon Neural Network Simulation Dataset

Dataset Description

The NeuraxonLife 2.0 1M Dataset contains detailed simulation data from an artificial life environment where autonomous agents ("NxErs") evolve biologically-plausible Neuraxon neural networks. This dataset captures the complete neural architecture, synaptic connectivity, neuromodulation states, and behavioral performance metrics of evolved artificial organisms.

Dataset Summary

This dataset provides a unique window into how neural networks evolve under survival pressure in a simulated ecosystem. Each NxEr (Neuraxon Entity) is an autonomous agent with:

  • A Neuraxon neural network (https://www.researchgate.net/publication/397331336_Neuraxon ) with dendritic computation
  • Multi-timescale synaptic plasticity (fast, slow, meta)
  • Four neuromodulatory systems (dopamine, serotonin, acetylcholine, norepinephrine)
  • Behavioral capabilities (movement, foraging, mating)
  • Evolutionary fitness tracking

Supported Tasks

  • Neural Architecture Analysis: Study evolved network topologies
  • Synaptic Weight Distribution: Analyze learned connection patterns
  • Neuromodulation Research: Investigate modulator dynamics
  • Fitness Prediction: Predict agent fitness from neural parameters
  • Evolutionary Dynamics: Track neural evolution across generations

Dataset Structure

The dataset consists of four interconnected tables stored as separate Parquet files:

/
β”œβ”€β”€ neuraxonLife2-1M_nxers.parquet      # Agent-level data
β”œβ”€β”€ neuraxonLife2-1M_neurons.parquet    # Neuron-level data
β”œβ”€β”€ neuraxonLife2-1M_synapses.parquet   # Synapse-level data
β”œβ”€β”€ neuraxonLife2-1M_branches.parquet   # Dendritic branch data
β”œβ”€β”€ neuraxonLife2-1M_manifest.json      # Dataset metadata
└── README.md                   # This file

Data Tables

1. NxErs Table (neuraxonLife2-1M_nxers.parquet)

Agent-level data containing identity, attributes, neural network parameters, and performance metrics.

Column Type Description
Identifiers
game_id string Unique game/simulation identifier
nxer_id int Agent ID within the game
nxer_name string Agent name
Game Context
game_step int Current simulation tick
game_births int Total births in game
game_deaths int Total deaths in game
game_index int Game sequence index
World Configuration
NxWorldSize int World grid size
NxWorldSea float Sea proportion (0-1)
NxWorldRocks float Rock proportion (0-1)
MaxFood int Maximum food items
MaxNeurons int Maximum neurons per agent
Basic Attributes
is_male int Gender (1=male, 0=female)
gender string "Male" or "Female"
can_land int Can traverse land (0/1)
can_sea int Can traverse sea (0/1)
terrain string "Land", "Sea", or "Amphibious"
alive int Alive status (0/1)
food float Current food/energy level
Color
color_r int Red component (0-255)
color_g int Green component (0-255)
color_b int Blue component (0-255)
Sensory
vision_range int Vision distance in tiles
smell_radius int Smell detection radius
heading int Current heading direction
clan_id int Clan affiliation (-1 if none)
Position
pos_x int Current X position
pos_y int Current Y position
last_pos_x int Previous X position
last_pos_y int Previous Y position
Lifecycle
born_ts float Birth timestamp
died_ts float Death timestamp (0 if alive)
ticks_per_action int Action frequency
visited_count int Unique positions visited
Behavioral State
is_harvesting int Currently harvesting (0/1)
is_mating int Currently mating (0/1)
dopamine_boost_ticks int Dopamine boost duration
Lineage
has_parents int Has known parents (0/1)
parent_count int Number of parents
Neural Inputs
last_input_0 to last_input_5 float Last sensory inputs
last_output_o4 int Last O4 output
Performance Stats
food_found float Total food discovered
food_taken float Total food consumed
explored int Tiles explored
time_lived float Lifetime in seconds
mates int Successful matings
energy_eff float Energy efficiency score
temporal_sync float Temporal synchronization
fitness float Overall fitness score
Network Topology
n_input int Input neuron count
n_hidden int Hidden neuron count
n_output int Output neuron count
n_total int Total neuron count
n_synapses int Total synapse count
conn_density float Connection density
conn_prob float Connection probability
small_world_k int Small-world k parameter
rewire_prob float Rewiring probability
pref_attach int Preferential attachment (0/1)
max_axon_delay float Maximum axonal delay
Network Time
net_dt float Simulation timestep
net_min_dt float Minimum timestep
net_max_dt float Maximum timestep
activity_threshold float Activity threshold
Neuron Parameters
membrane_tau float Membrane time constant
thresh_exc float Excitatory threshold
thresh_inh float Inhibitory threshold
adaptation float Adaptation rate
spont_rate float Spontaneous firing rate
health_decay float Health decay rate
Dendritic Parameters
n_branches int Branches per neuron
branch_thresh float Branch threshold
plateau_decay float Plateau decay constant
Synaptic Time Constants
tau_fast float Fast synapse tau
tau_slow float Slow synapse tau
tau_meta float Metaplasticity tau
tau_ltp float LTP time constant
tau_ltd float LTD time constant
Weight Initialization
w_fast_min/max float Fast weight bounds
w_slow_min/max float Slow weight bounds
w_meta_min/max float Meta weight bounds
Learning & Plasticity
learn_rate float Base learning rate
stdp_window float STDP window size
plast_thresh float Plasticity threshold
assoc_strength float Associativity strength
Structural Plasticity
syn_integrity float Integrity threshold
syn_form_prob float Synapse formation prob
syn_death_prob float Synapse death prob
neuron_death float Neuron death threshold
Neuromodulation Baselines
da_base float Dopamine baseline
ser_base float Serotonin baseline
ach_base float Acetylcholine baseline
ne_base float Norepinephrine baseline
Neuromodulation Thresholds
da_high/low float Dopamine thresholds
ser_high/low float Serotonin thresholds
ach_high/low float Acetylcholine thresholds
ne_high/low float Norepinephrine thresholds
neuromod_decay float Modulator decay rate
diffusion float Diffusion rate
Oscillators
osc_low/mid/high float Oscillator frequencies
osc_strength float Oscillator strength
phase_coupling float Phase coupling strength
Energy Metabolism
energy_base float Baseline energy
firing_cost float Firing energy cost
plast_cost float Plasticity energy cost
metabolic_rate float Metabolic rate
recovery_rate float Energy recovery rate
Homeostasis
target_fire_rate float Target firing rate
homeo_plast_rate float Homeostatic plasticity
AIGarth/ITU
itu_radius int ITU circle radius
evol_interval int Evolution interval
fit_temporal_w float Temporal fitness weight
fit_energy_w float Energy fitness weight
fit_pattern_w float Pattern fitness weight
Current Neuromodulators
curr_da float Current dopamine
curr_ser float Current serotonin
curr_ach float Current acetylcholine
curr_ne float Current norepinephrine
Network State
net_time float Network simulation time
net_steps int Network step count
branching_ratio float Criticality measure
energy_consumed float Total energy consumed
itu_circle_count int ITU circle count

2. Neurons Table (neuraxonLife2-1M_neurons.parquet)

Individual neuron data within each agent's neural network.

Column Type Description
game_id string Game identifier
nxer_name string Parent agent name
neuron_id int Neuron ID
type string Neuron type ("input", "hidden", "output")
type_from_data string Type from raw data
Core State
membrane_pot float Membrane potential
trinary int Trinary state (-1, 0, 1)
trinary_label string "Inhibitory", "Neutral", "Excitatory"
adaptation float Adaptation level
health float Neuron health (0-1)
is_active int Active status (0/1)
energy float Energy level
Oscillation
phase float Current phase
nat_freq float Natural frequency
intrinsic_ts float Intrinsic timescale
ITU
circle_id int ITU circle ID (-1 if none)
neuron_fitness float Neuron fitness score
Individual Parameters
ind_membrane_tau float Individual membrane tau
ind_thresh_exc float Individual excitatory threshold
ind_thresh_inh float Individual inhibitory threshold
ind_adaptation float Individual adaptation rate
ind_spont_rate float Individual spontaneous rate
ind_health_decay float Individual health decay
ind_energy_base float Individual energy baseline
ind_firing_cost float Individual firing cost
ind_plast_cost float Individual plasticity cost
ind_metabolic float Individual metabolic rate
ind_recovery float Individual recovery rate
Dendritic Statistics
n_branches int Number of dendritic branches
branch_pot_mean/std/min/max float Branch potential statistics
plateau_mean/max float Plateau potential statistics
branch_thresh_mean/std float Branch threshold statistics
plateau_decay_mean float Mean plateau decay

3. Synapses Table (neuraxonLife2-1M_synapses.parquet)

Synaptic connection data between neurons.

Column Type Description
game_id string Game identifier
nxer_name string Parent agent name
pre_id int Presynaptic neuron ID
post_id int Postsynaptic neuron ID
Weights
w_fast float Fast synaptic weight
w_slow float Slow synaptic weight
w_meta float Meta-plasticity weight
w_total float w_fast + w_slow
w_abs float |w_fast| + |w_slow|
w_fast_abs float |w_fast|
w_slow_abs float |w_slow|
w_meta_abs float |w_meta|
Flags
is_silent int Silent synapse (0/1)
is_modulatory int Modulatory synapse (0/1)
syn_type string Synapse type string
is_ionotropic_fast int Fast ionotropic (0/1)
is_ionotropic_slow int Slow ionotropic (0/1)
is_metabotropic int Metabotropic (0/1)
Properties
integrity float Synapse integrity (0-1)
axon_delay float Axonal delay
learn_mod float Learning rate modifier
delta_w float Potential weight change
Individual Time Constants
ind_tau_fast float Individual tau fast
ind_tau_slow float Individual tau slow
ind_tau_meta float Individual tau meta
ind_tau_ltp float Individual tau LTP
ind_tau_ltd float Individual tau LTD
ind_learn_rate float Individual learning rate
ind_plast_thresh float Individual plasticity threshold
Derived Metrics
tau_ratio_fast_slow float tau_fast / tau_slow
tau_ratio_ltp_ltd float tau_ltp / tau_ltd

4. Branches Table (neuraxonLife2-1M_branches.parquet)

Dendritic branch data for detailed dendritic computation.

Column Type Description
game_id string Game identifier
nxer_name string Parent agent name
neuron_id int Parent neuron ID
branch_id int Branch ID
branch_pot float Branch potential
branch_pot_abs float |branch_pot|
plateau_pot float Plateau potential
branch_thresh float Branch threshold
plateau_decay float Plateau decay constant
above_threshold int Above threshold (0/1)
has_plateau int Has plateau (0/1)

Relationships Between Tables

NxErs (1) ──────┬───────── (N) Neurons
                β”‚
                └───────── (N) Synapses

Neurons (1) ────────────── (N) Branches
  • NxErs β†’ Neurons: One NxEr contains multiple neurons (join on game_id + nxer_name)
  • NxErs β†’ Synapses: One NxEr contains multiple synapses (join on game_id + nxer_name)
  • Neurons β†’ Branches: One neuron contains multiple dendritic branches (join on game_id + nxer_name + neuron_id)
  • Synapses β†’ Neurons: pre_id and post_id reference neuron_id within the same NxEr

Usage

Loading with Python (pandas)

import pandas as pd

# Load individual tables
nxers = pd.read_parquet('neuraxonLife2-1M_nxers.parquet')
neurons = pd.read_parquet('neuraxonLife2-1M_neurons.parquet')
synapses = pd.read_parquet('neuraxonLife2-1M_synapses.parquet')
branches = pd.read_parquet('neuraxonLife2-1M_branches.parquet')

# Example: Get all neurons for a specific agent
agent_neurons = neurons[neurons['nxer_name'] == 'NxEr_42']

# Example: Analyze fitness vs network topology
import matplotlib.pyplot as plt
plt.scatter(nxers['n_synapses'], nxers['fitness'])
plt.xlabel('Number of Synapses')
plt.ylabel('Fitness Score')
plt.show()

Loading with Hugging Face Datasets

from datasets import load_dataset

# Load from Hugging Face Hub
dataset = load_dataset("DavidVivancos/NeuraxonLife2-1M")

# Access tables
nxers = dataset['nxers']
neurons = dataset['neurons']

Example Analyses

1. Fitness Prediction

from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split

features = ['n_synapses', 'conn_density', 'curr_da', 'curr_ser', 
            'membrane_tau', 'learn_rate', 'n_hidden']
X = nxers[features]
y = nxers['fitness']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
model = RandomForestRegressor()
model.fit(X_train, y_train)
print(f"RΒ² Score: {model.score(X_test, y_test):.3f}")

2. Synaptic Weight Analysis

# Weight distribution by synapse type
synapses.groupby('syn_type')['w_fast'].describe()

# Excitatory vs inhibitory balance
exc_weights = synapses[synapses['w_fast'] > 0]['w_fast'].sum()
inh_weights = synapses[synapses['w_fast'] < 0]['w_fast'].abs().sum()
print(f"E/I Ratio: {exc_weights / inh_weights:.2f}")

3. Network Topology

import networkx as nx

# Build graph for one agent
agent_synapses = synapses[synapses['nxer_name'] == 'NxEr_42']
G = nx.DiGraph()
for _, syn in agent_synapses.iterrows():
    G.add_edge(syn['pre_id'], syn['post_id'], weight=syn['w_fast'])

# Analyze topology
print(f"Clustering coefficient: {nx.average_clustering(G):.3f}")
print(f"Average path length: {nx.average_shortest_path_length(G):.3f}")

Dataset Creation

This dataset was generated using the Neuraxon Artificial Life simulation Research framework 2.0.

The extraction process:

  1. 1000s of Test Games where performed, that saved 1000s of json files
  2. Then Loading game state JSON files from simulation runs
  3. Extracting hierarchical data (agents β†’ neurons β†’ synapses β†’ branches)
  4. Converting to columnar Parquet format with Snappy compression
  5. Validating data integrity and relationships

Citation

If you use this dataset, please cite:

@dataset{NeuraxonLife2-1M,
  title={Neuraxon: Artificial Life 2.0 BioInspired Neural Network Simulation 1M Dataset},
  author={Vivancos, David and Sanchez, Jose},
  year={2025},
  publisher={Hugging Face},
  url={https://huggingface.co/datasets/DavidVivancos/NeuraxonLife2-1M}
}

License

This dataset is released under the CC BY 4.0 license.

Additional Information

Authors

Dataset Curators

Version History

  • v1.0.0 (2025): Initial release

Contact

For questions or issues, please open a GitHub issue here https://github.com/DavidVivancos/Neuraxon or contact [[email protected]].

Downloads last month
8